Skip to main content
Log in

Sources of nutrient inputs to the Patuxent River estuary

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

We quantified annual nutrient inputs to the Patuxent River estuary from point and nonpoint sources and from direct atmospheric deposition. We also compared nonpoint source (NPS) discharges from Piedmont and Coastal Plain regions and from agricultural and developed lands. Using continuous automated-sampling, we measured discharges of water, nitrogen, phosphorus, organic carbon (C), and suspended solids from a total of 23 watersheds selected to represent various proportions of developed land and cropland in the Patuxent River basin and the neighboring Rhode River basin. The sampling period spanned two years that differed in annual precipitation by a factor of 1.7. Water discharge from the watershed to the Patuxent River estuary was 3.4 times higher in the wet year than in the dry year. Annual water discharges from the study watersheds increased as the proportion of developed land increased. As the proportion of cropland increased, there were increases in the annual flow-weighted mean concentrations of nitrate (NO3 ), total nitrogen (TN), dissolved silicate (Si), total phosphate (TPO4 3−), total organic phosphorus (TOP), total P (TP), and total suspended solids (TSS) in NPS discharges. The effect of cropland on the concentrations of NO3 and TN was stronger for Piedmont watersheds than for Coastal Plain watersheds. As the proportion of developed land increased, there were increases in annual mean concentrations of NO3 , total ammonium (TNH4 +), total organic N (TON), TN, total organic C (TOC), TPO4 3−, TOP, TP, and TSS and decreases in concentrations of Si. Annual mean concentrations of TON, TOC, forms of P, and TSS were highest in the wet year. Annual mean concentrations of NO3 , TNH4 +, TN, and Si did not differ significantly between years. We directly measured NPS discharges from about half of the Patuxent River basin and estimated discharges from the other half of the basin using statistical models that related annual water flow and material concentrations to land cover and physiographic province. We compared NPS discharges to public data on point source (PS) discharges. We estimated direct atmospheric deposition of forms of N, P, and organic C to the Patuxent River estuary based on analysis of bulk deposition near the Rhode River. During the wet year, most of the total terrestrial and atmospheric inputs of forms of N and P came from NPS discharges. During the dry year, 53% of the TNH4 + input was from atmospheric deposition and 58% of the NO3 input was from PS discharges; NPS and PS discharges were about equally important in the total inputs of TN and TPO4 3−. During the entire 2-yr period, the Coastal Plain portion of the Patuxent basin delivered about 80% of the NPS water discharges to the estuary and delivered similar proportions of the NPS TNH4 +, TN, TOP, and TSS. The Coastal Plain delivered greater proportions of the NPS TON, TOC, Si, and TP (89%, 90%, 93%, and 95%, respectively) than of water, and supplied nearly all of the NPS TPO4 3− (99%). The Piedmont delivered 33% of the NPS NO3 while delivering only 20% of the NPS water to the stuary. We used statistical models to infer the percentages of NPS discharges supplied by croplands, developed lands, and other lands. Although cropland covers only 10% of the Patuxent River basin, it was the most important source of most materials in NPS discharge, supplying about 84% of the total NPS discharge of NO3 ; about three quarters of the TPO4 3−, TOP, TP, and TSS; and about half of the TNH4 + and TN. Compared to developed land, cropland supplied a significantly higher percentage of the NPS discharges of NO3 , TN, TPO4 3−, TOP, TP, and TSS, despite the fact development land covered 12% of the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alexander, R. B., R. A. Smith, G. E. Schwarz, S. D. Pereston, J. W. Brakebill, R. Srinivasan, andP. A. Pacheco. 2001. Atmospheric nitrogen flux from the watersheds of major estuaries of the United States: An application of the SPARROW watershed model, p. 119–170.In R. M. Valigura, R. B. Alexander, M. S. Castro, T. P. Meyers, H. W. Paerl, P. E. Stacey, and R. E. Turner (eds.), Nitrogen Loading in Coastal Water Bodies: An Atmospheric Perspective. Coastal and Estuarine Studies Series, 57, American Geophysical Union, Washington, D.C.

    Google Scholar 

  • American Public Health Association (APHA). 1995. Standard Methods for the Examination of Water and Wastewart, 19th edition, Washington, D.C.

  • Anderson, G. F. 1986. Silica, diatoms and a freshwater productivity maximum in Atlantic Coastal Plain estuaries, Chesapeake Bay.Estuarine, Coastal and Shelf Science 22:183–198.

    Article  CAS  Google Scholar 

  • Bicknell, B. R., J. C. Imhoff, J. L. Kittle, A. S. Donigian, andR. C. Johanson. 1997. Hydrologic Simulation Program—Fortran User's Manual for Version 11. Report No. EPA 903-R-94-042. U.S. Environmental Protection Agency Chesapeake Bay Program Office, Annapolis, Maryland.

    Google Scholar 

  • Bohlke, J. K. andJ. M. Denver. 1995. Combined use of ground-water dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic Coastal Plain, Maryland.Water Resources Research 31:2319–2339.

    Article  CAS  Google Scholar 

  • Boynton, W. R., J. H. Garber, R. Summers, andW. M. Kemp. 1995. Inputs, transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.

    Article  CAS  Google Scholar 

  • Boynton, W. R., W. M. Kemp, andC. W. Keefe. 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production, p. 69–90.In V. Kennedy (ed.). Estuarine Comparisons, Academic Press, New York.

    Google Scholar 

  • Breituburg, D. L., A. Adamack, K. A. Rose, S. E. Kolesar, M. B. Decker, J. E. Purcell, J. E. Keister, andJ. H. Cowan, Jr. 2003. The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary.Estuaries 26: 280–297.

    Article  Google Scholar 

  • Breitburg, D. L., J. G. Sanders, C. C. Gilmour, C. A. Hatfield, R. W. Osman, G. F. Riedel, S. P. Seitzinger, andK. P. Sellner. 1999. Variability in responses to nutrients and trace elements, and transmission of stressor effects through an estuarine food web.Limnology and Oceanography 44:837–863.

    CAS  Google Scholar 

  • Carpenter, D. H. 1983. Characteristics of streamflow in Maryland. Report of Investigations No. 35. Maryland Geological Survey, Baltimore, Maryland.

    Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, andV. H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen.Ecological Applications 8:559–568.

    Article  Google Scholar 

  • Castro, M. S., C. T. Driscoll, T. E. Jordan, W. G. Reay, W. R. Boynton, S. P. Seitzinger, R. V. Styles, andJ. E. Cable. 2001. Contribution of atmospheric deposition to the total nitrogen loads to thirty-four estuaries on the Atlantic and Gulf Coasts of the United States, p. 77–106.In R. M. Valigura, R. B. Alexander, R. E. Turner (eds.), Nitrogen Loading in Coastal Water Bodies: An Atmospheric Perspective. Coastal and Estuarine Studies Series 57, American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Chow, V. T. 1964. Handbook of Applied Hydrology. McGraw-Hill Book Company. New York.

    Google Scholar 

  • Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210:223–253.

    Article  CAS  Google Scholar 

  • Conley, D. J. 2000. Biogeochemical nutrient cycles and nutrient management strategies.Hydrobiologia 410:87–96.

    Article  Google Scholar 

  • Conley, D. J. andT. C. Malone. 1992. Annual cycle of dissolved silicate in Chesapeake Bay: Implications for the production and fate of phytoplankton biomass.Marine Ecology Progress Series 81:121–128.

    Article  CAS  Google Scholar 

  • Correll, D. L. 1977. Overview of the Rhode River watershed program, p. 105–124.In D. L. Correll (ed.), Watershed Research in Eastern North America. Smithsonian Press, Washington, D.C.

    Google Scholar 

  • Correll, D. L. 1981. Nutrient mass balances for the watershed, headwaters intertidal zone, and basin of the Rhode River estuary.Limnology and Oceanography 26:1142–1149.

    Article  Google Scholar 

  • Correll, D. L. 1987. Nutrients in Chesapeake Bay, p. 298–319.In S. K. Majumdar, L. W. Hall, Jr., and H. M. Austin (eds.), Contaminant Problems and Management of Living Chesapeake Bay Resources. The Pennsylvania Academy of Science, Philadelphia, Pennsylvania.

    Google Scholar 

  • Correll, D. L. 1996. Environmental impact of pasture systems on surface water quality, p. 231–243.In R. E. Joost and C. A. Roberts (eds.).Nutrient Cycling in Foundation for Agronomic Research. Potash and Phosphate Institute and Foundation for Agronomic Research Manhatton, Kansas.

    Google Scholar 

  • Correll, D. L. andD. Ford. 1982. Comparison of precipitation and land runoff as sources of estuarine nitrogen.Estuarine, Coastal and Shelf Science 15:45–56.

    Article  CAS  Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1992. Nutrient flux in a landscape: Effects of coastal land use and terrestrial community mosaic on nutrient transport to coastal waters.Estuaries 15:431–442.

    Article  CAS  Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1994. Long-term nitrogen deposition on the Rhode River watershed, p. 508–518.In P. Hill and S. Nelson (eds.) Toward a Sustainable Watershed: The Chesapeake Experiment. Proceedings of a Conference, Publication No. 149. Chesapeake Research Consortium, Edgewater, Maryland.

    Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1999a. Effects of interannual variation of precipitation on stream discharge Rhode River subwatersheds.Journal of the American Water Resources Association 35:73–82.

    Article  Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1999b. Effects of precipitation and air temperature on phosphorus fluxes from Rhode River watersheds.Journal of Environmental Quality 28:144–154.

    CAS  Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1999c. Effects of precipitation and air temperature on nitrogen discharges from Rhode River watersheds.Water, Air, and Soil Pollution 115: 547–575.

    Article  CAS  Google Scholar 

  • Crowley, P. H. 1992. Resampling methods for computation-intensive data analysis in ecology and evolution.Annual Review of Ecology and Systematics 23:405–407.

    Article  Google Scholar 

  • D'Elia, C. F., W. R. Boynton, andJ. G. Sanders. 2003. A watershed perspective on nutrient enrichment, science and policy in the Patuxent River, Maryland: 1960–2000.Estuaries 26: 171–185.

    Article  Google Scholar 

  • D'Elia, C. F., D. M. Nelson, andW. R. Boynton. 1983. Chesapeake Bay nutrient and plankton dynamics: III. The annual cycle of dissolved silicon.Geochinica et Cosmochimica Acta 47: 1945–1955.

    Article  Google Scholar 

  • Dillon, P. J. andW. B. Kirchner. 1975. The effects of geology and land use on the export of phosphorus from watersheds.Water Research 9:135–148.

    Article  CAS  Google Scholar 

  • Efron, B. 1982. The Jackknife, the ootstrap, and Other Resampling Plans. J. W. Arrowsmith Ltd., Bristol, England.

    Google Scholar 

  • Environmental Protection Agency-Environmental Monitoring and Assessment Program (EPA-EMPA). 1994. Chesapeake Bay watershed pilot project, EPA/620/R94/020. EPA-EMAP, Research Triangle Park, North Carolina.

    Google Scholar 

  • Frink, C. R. 1991. Estimating nutrient exports to estuaries.Journal of Environmental Quality 20:717–724.

    CAS  Google Scholar 

  • Gallegos, C. L., T. E. Jordan, andD. L. Correll. 1992. Eventscale response of phytoplankton to watershed inputs in a subestuary: Timing, magnitude, and location of blooms.Limnology and Oceanography 37:813–828.

    CAS  Google Scholar 

  • Gaudy, A. F. andM. Ramanathan. 1964. A colorimetric method for determining chemical oxygen demand.Journal of the Water Pollution Control Federation 36:1479–1487.

    CAS  Google Scholar 

  • Gold, A. J., W. R. DeRagon, W. M. Sullivan, andJ. L. Lemunyon. 1990. Nitrate-nitrogen losses to groundwater from rural and suburban land uses.Journal of Soil and Water Conservation 45:305–310.

    Google Scholar 

  • Grobler, D. C., andM. J. Silberbauer. 1985. The combined effect of geology, phosphate sources and runoff on phosphate export from drainage basins.Water Research 19:975–981.

    Article  CAS  Google Scholar 

  • Harding, L. W. 1994. Long-term trends in the distribution of phytoplankton in Chesapeake Bay: Roles of light nutrients and stream flow.Marine Ecology Progress Series 104:267–291.

    Article  Google Scholar 

  • Hopkinson, C. S., I. Buffam, J. Hobbie, J. Vallino M. Perdue, B. Eversmeyer, F. Prahl, J. Conert, R. Hodson, M. A. Moran, E. Smith, J. Baross, B. Crump, S. Findlay, andK. Foreman. 1998. Terrestrial inputs of organic matter to coastal ecosystems: An intercomparison of chemical characteristics and bioavailability.Biogeochemistry 43:211–234.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, J. Miklas, andD. E. Weller. 1991a. Nutrients and chlorophyll at the interface of a watershed and an estuary.Limnology and Oceanography 36:251–267.

    CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, J. Miklas, andD. E. Weller. 1991b. Long-term trends in estuarine nutrients and chlorophyll, and short-term effects of variation in watershed discharge.Marine Ecology Progress Series 75:121–132.

    Google Scholar 

  • Jordan, T. E., D. L. Correll, andD. E. Weller. 1997a. Effects of agriculture on discharges of nutrients from Coastal Plain watersheds of Chesapeake Bay.Journal of Environmental Quality 26:836–848.

    CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, andD. E. Weller. 1997b. Nonpoint source discharges of nutrients from Piedmont water-sheds of Chesapeake Bay.Journal of the American Water Resources Association 33:631–645.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, andD. E. Weller. 1997c. Relating nutrient discharges from watersheds to land use and stream-flow variability.Water Resources Research 33:2579–2590.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, D. E. Weller, andN. M. Goff. 1995. Temporal variation in precipitation chemistry on the shore of the Chesapeake Bay.Water, Air, and Soil Pollution 83:263–284.

    Article  CAS  Google Scholar 

  • Jordan, T. E., J. W. Pierce, andD. L. Correll. 1986. Flux of particulate matter in the tidal marshes and subtidal shallows of the Rhode River estuary.Estuaries 9:310–319.

    Article  Google Scholar 

  • Jordan, T. E., andD. E. Weller. 1996. Human contributions to terrestrial nitrogen flux.BioScience 46:655–664.

    Article  Google Scholar 

  • Kemp, W. M., R. R. Twilly, J. C. Stevenson, W. R. Boynton, andJ. C. Means. 1983. The decline of submerged vascular plants in upper Chesapeake Bay: Summary of results concerning possible causes.Marine Technology Society Journal 17: 78–89.

    Google Scholar 

  • King, E. J. 1932. The colorimetric determination of phosphorus.Biochemistry Journal 26:292–297.

    CAS  Google Scholar 

  • Kronvang, B. 1992. The export of particulate matter, particulate phosphorus and dissolved phosphorus from two agricultural river basins: Implications on estimating the non-point phosphorus load.Water Research 26:1347–1358.

    Article  CAS  Google Scholar 

  • Kronvang, B., R. Grant, S. E. Larsen, L. M. Svendsen, andP. Kristensen. 1995. Non-point-source nutrient losses to the aquatic environment in Denmark: Impact of agriculture.Marine and Freshwater Research 46:167–177.

    CAS  Google Scholar 

  • Langland, M. J., P. L. Lietman, andS. Hoffman. 1995. Synthesis of nutrient and sediment data for watersheds within the Chesapeake Bay drainage basin. U. S. Geological Survey, Lemoyne, Pennsylvania.

    Google Scholar 

  • Lung, W. S., andS. Bai. 2003. A water quality model for the Patuxent estuary: Current conditions and predictions under changing land-use scenarios.Estuaries 26:267–279.

    Article  CAS  Google Scholar 

  • Maciolek, J. A. 1962. Limnological organic analyses by quantitative dichromate oxidation. U.S. Fish and Wildlife Service, Washington, D.C.

    Google Scholar 

  • Malone, T. C., L. H. Crocker, S. E. Pike, andB. W. Wendler. 1988. Influence of river flow on the dynamics of phytoplankton production in a partially stratified estuary.Marine Ecology Progress Series 48:235–249.

    Article  Google Scholar 

  • Malone, T. C., W. M. Kemp, H. W. Ducklow, W. R. Boynton, J. H. Tuttle, andR. B. Jonas. 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary.Marine Ecology Progress Series 32:149–160.

    Article  Google Scholar 

  • Martin, D. F. 1972. Marine Chemistry, Version 1. Dekker, New York.

    Google Scholar 

  • Mason, J. W., G. D. Wegner, G. I. Quinn, andE. L. Lange. 1990. Nutrient loss via groundwater discharge from small watersheds in southwestern and south central Wisconsin.Journal of Soil and Water Conservation 45:327–331.

    Google Scholar 

  • Michaels, A. F., D. A. Siegel, R. J. Johnson, A. H. Knap, andJ. N. Galloway. 1993. Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms.Global Biogeochemical Cycles 7:339–351.

    Article  CAS  Google Scholar 

  • Nearing, M. A., R. M. Risse, andL. F. Rogers. 1993. Estimating daily nutrient fluxes to a large Piedmont reservoir from limited tributary data.Journal of Environmental Quality 22:666–671.

    CAS  Google Scholar 

  • Neill, M. 1989. Nitrate concentrations in river waters in the south-east of Ireland and their relationship with agricultural practice.Water Research 23:1339–1355.

    Article  CAS  Google Scholar 

  • Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future consequences.Ophelia 41:199–219.

    Google Scholar 

  • Nizeyimana, E., G. W. Petersen, M. C. Anderson, B. M. Evans, J. M. Hamlett, andG. M. Baumer. 1996. Statewide GIS/census data assessment of nitrogen loadings from septic systems in Pennsylvania.Journal of Environmental Quality 25:346–354.

    CAS  Google Scholar 

  • Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, andW. R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development, significance.Science 223:22–27.

    Article  CAS  Google Scholar 

  • Orth, R. J. andK. A. Moore. 1983. Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation.Science 222:51–53.

    Article  CAS  Google Scholar 

  • Owens, L. B., W. M. Edwards, andR. W. Keuren. 1991. Base-flow and stormflow transport of nutrients from mixed agricultural watersheds.Journal of Environmental Quality 21:147–150.

    Google Scholar 

  • Owens, N. J. P., J. N. Galloway, andR. A. Duce. 1992. Episodic atmospheric nitrogen deposition to oligotrophic oceans.Nature 357:397–399.

    Article  CAS  Google Scholar 

  • Pearl, H. W. 1985. Enhancement of marine primary production by nitrogen-enriched acid rain.Nature 316:747–749.

    Article  Google Scholar 

  • Pearl, H. W., andM. L. Fogel. 1994. Isotopic characterization of atmospheric nitrogen inputs as sources of enhanced primary production in coastal Atlantic Ocean waters.Marine Biology 119:635–645.

    Article  Google Scholar 

  • Rekolainen, S. 1990. Phosphorus and nitrogen load from forest and agricultural areas in Finland.Aqua Fennica 19:95–107.

    Google Scholar 

  • SAS Institute, Inc. 1999. SAS/STAT User's Guide, Version 8. SAS Institute Inc., Cary, North Carolina.

    Google Scholar 

  • Schueler, T. R. 1987. Controlling urban runoff: A practical manual for planning and designing urban BMPs. Department of Environmental Programs, Metropolitan Washington Council of Governments, Washington, D.C.

    Google Scholar 

  • Scudlark, J. R. andT. M. Church. 1993. Atmospheric input of inorganic nitrogen to Delaware Bay.Estuaries 16:747–759.

    Article  CAS  Google Scholar 

  • Seitzinger, S. P. andR. W. Sanders. 1999. Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton.Limnology and Oceanography 44:721–730.

    Article  CAS  Google Scholar 

  • Short, F. T. andD. M. Burdick. 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts.Estuaries 19:730–739.

    Article  Google Scholar 

  • Smith, R. A., R. B. Alexander, andK. J. Lanfear. 1993. Stream water quality in the conterminus United States—Status and trends on selected indicators during the 1980s. U.S. Geological Survey Water-Supply Paper 2400. U. S. Geological Survey, Reston, Virginia.

    Google Scholar 

  • Smith, R. A., G. E. Schwarz, andR. B. Alexander. 1997. Regional interpretation of water-quality monitoring data.Water Resources Research 33:2781–2794.

    Article  CAS  Google Scholar 

  • Sprague, L. A., M. J. Langland, S. E. Yochum, R. E. Edwards, J. D. Blomquist, S. W. Phillips, G. W. Shenk, andS. D. Preston. 2000. Factors affecting nutrient trends in major rivers of the Chesapeake Bay watershed. Water-Resources Investigations Report 00-4218. U.S. Geological Survey, Reston, Virginia.

    Google Scholar 

  • Stankelis, R. M., M. D. Naylor, andW. R. Boynton. 2003. Submerged aquatic vegetation in the mesohaline region of th Patuxent River estuary: Past, present, and future status.Estuaries 26:186–195.

    Article  Google Scholar 

  • Strickland, J. D. H., andT. R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd edition.Bulletin of the Fisheries Board of Canada 165:81–85.

    Google Scholar 

  • Taft, J. L., W. R. Taylor, E. O. Hartwig, andR. Loftus. 1980. Seasonal oxygen depletion in Chesapeake Bay.Estuaries 3: 242–247.

    Article  Google Scholar 

  • Thomas, G. W., G. R. Haszler, andJ. D. Crutchfield. 1992. Nitrate-nitrogen and phosphate-phosphorus in seven Kentucky streams draining small agricultural watersheds: Eighteen years later.Journal of Environmental Quality 21:147–150.

    CAS  Google Scholar 

  • Valiela, I., K. Foreman, M. LaMontagne, D. Hersh, J. Costa, P. Peckrol, B. DeMeo-Anderson, C. D'Avonzo, M. Babione, C. Sham, J. Brewley, andK. Lajtha. 1992. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Qaquoit, Massachusetts.Estuaries 15: 443–457.

    Article  CAS  Google Scholar 

  • Vighi, M., S. Soprani, P. Puzzarini, andG. Menghi. 1991. Phosphorus loads from selected watersheds in the drainage area of the Northern Adriatic Sea.Journal of Environmental Quality 20:439–444.

    CAS  Google Scholar 

  • Walling, D. E. andB. W. Webb. 1985. Estimating the discharge of contaminants to coastal waters by rivers: Some cautionary comments.Marine Pollution Bulletin 16:488–492.

    Article  Google Scholar 

  • Weiskel, P. K., andB. L. Howes. 1992. Differential transport of sewage-derived nitrogen and phosphorus through a coastal watershed.Environmental Science and Technology 26:352–359.

    Article  CAS  Google Scholar 

  • Weller, D. E., D. L. Correll, T. E. Jordan, andJ. M. Coffee. 1996. Scale-dependent success in quantifying cropland from satellite-based land cover data.Bulletin of the Ecological Society of America 77:474.

    Google Scholar 

  • Weller, D. E., T. E. Jordan, D. L. Correll, andZ-J. Liu. 2003. Effects of land-use change on nutrient discharges from the Patuxent River watershed.Estuaries 26:244–266.

    Article  CAS  Google Scholar 

Sources of Unpublished Materials

  • Papuli, P. and J. Liang. Personal communication. Maryland Department of the Environment, 2500 Broening Highway, Baltimore, Maryland 21224.

  • Wright, K. and L. Wold. Personal communication. Washington Suburban Sanitary Commission, 14501 Sweitzer Lane, Laurel, Maryland 20707.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, T.E., Weller, D.E. & Correll, D.L. Sources of nutrient inputs to the Patuxent River estuary. Estuaries 26, 226–243 (2003). https://doi.org/10.1007/BF02695964

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02695964

Keywords

Navigation