Skip to main content
Log in

Freshwater requirements of a semi-arid supratidal and floodplain salt marsh

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

When rivers are impounded, the reduction in downstream flow can produce important and often adverse effects, especially in the estuarine environment. One or more dams have been proposed for the Olifants River system in the Western Cape, South Africa. This estuary has an extensive area of salt marsh that was examined to see whether it required occasional flooding with freshwater to wash out accumulated salts. The dominant salt marsh species,Sarcocornia pillansii, occurred in supratidal and floodplain areas where the water table was shallowest, the soil moisture highest, and the soil electrical conductivity lowest. Aerial photographs and simulated runoff data showed that no flood had covered the floodplain during the previous 80 years. The data indicate that salt marsh plants use saline groundwater during the dry months of the year in order to survive, but use the short season winter rainfall period with low salinity conditions to grow and reproduce. This study demonstrated that live roots ofS. pillansii reached the water table during the dry season. Tissue and soil water potentials, the relationship between vegetation cover, depth to the water table, and electrical conductivity of the groundwater support the conclusion that saline groundwater is the only source of water during the drier months of the year. Freshwater flooding of the river in winter may be important because it covers the supratidal area with less saline water and reduces the depth to the water table on the floodplain. This makes the groundwater more accessible to the halophytes growing on the floodplain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adams, J. B. andG. C. Bate. 1997. Preliminary assessment of the effects of altered freshwater flow on the flora of the Olifants River estuary. Council for Scientific and Industrial Research. Stellenbosch, South Africa.

    Google Scholar 

  • Álvarez Rogel, J., R. Ortiz Silla, andF. Alcaraz Ariza. 2001. Adaphic characterization and soil ionic composition influencing plant zonation in a semiarid mediterranean salt marsh.Geoderma 99:81–98.

    Article  Google Scholar 

  • Barnard, R. O. 1990. Handbook of Standard Soil Testing Methods for Advisory Purposes. Soil Science Society of South Africa, Pretoria, South Africa.

    Google Scholar 

  • Black, C. B. 1965. Methods of Soil Analysis. American Society of Agronomy, Inc., Madison, Wisconsin.

    Google Scholar 

  • Bornman, T. G.. 2002. Freshwater requirements of supratidal and floodplain salt marsh on the West Coast, South Africa. Ph.D. Thesis, University of Port Elizabeth, Port Elizabeth, South Africa.

    Google Scholar 

  • Briggs, D.. 1977. Sources and Methods in Geography. Butterworths, London, U.K.

    Google Scholar 

  • Callaway, R. M., S. J. Jones, W. R. Ferren, Jr., andA. Parikh. 1990. Ecology of a Mediterranean-climate estuarine wetland at Carpinteria, California: Plant distributions and soil salinity in the upper marsh.Canadian Journal of Botany 68:1139–1146.

    Google Scholar 

  • Cantero, J. J., R. Leon, J. M. Cisneros, andA. Cantero. 1998. Habitat structure and vegetation relationships in central Argentina salt marsh landscapes.Plant Ecology 137:79–100.

    Article  Google Scholar 

  • Carr, P. A. andG. S. van der Kamp. 1969. Determining aquifer characteristics by the tidal method.Water Resources Research 5: 1023–1031.

    Article  Google Scholar 

  • Cisneros, J. M., J. J. Cantero, andA. Cantero. 1999. Vegetation, soil hydrophysical properties, and grazing relationships in saline-sodic of Central Argentina.Canadian Journal of Soil Science 79:399–409.

    Google Scholar 

  • Coetzee, J. C., J. B. Adams, andC. C. Bate. 1997. A botanical importance rating of selected Cape estuaries.Water SA 23:81–93.

    Google Scholar 

  • Council for Scientific and Industrial Research. 1984. Estuaries of the Cape. Part II: Synopsis of the available information on individual systems. Report No. 26: Olifants (CW 10). Council for Scientific and Industrial Research Report 425. Stellenbosch, South Africa.

  • Council for Scientific and Industrial Research. 1991. Environmental rehabilitation: Orange River saltmarshes. Council for Scientific and Industrial Research report, EMA-C 91165. Stellenbosch, South Africa.

  • Day, P. R. 1965. Particle fractionation and particle size analysis.In C. A. Black, D. D. Evans, and R. C. Dinaer (eds.). Methods of Soil Analysis Part I.Agronomy 9:545–567.

  • Dodd, G. L. andL. A. Donovan. 1999. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs.American Journal of Botany 86:1146–1153.

    Article  Google Scholar 

  • Donovan, L. A. andJ. R. Ehleringer. 1994. Water stress and use of summer precipitation in a Great Basin shrub community.Functional Ecology 8:289–297.

    Article  Google Scholar 

  • Donovan, L. A., J. H. Richards, andM. W. Muller. 1996. Water relations and leaf chemistry ofChrysothamnus nauseosus spp.consimilis (Asteraceae) andSarcobatus vermiculatus (Chenopodiaceae).American Journal of Botany 83:1637–1646.

    Article  CAS  Google Scholar 

  • Egan, T. P. andI. A. Ungar. 2000. Mortality of the salt marsh speciesSalicornia europaea andAtriplex prostrata (Chenopodiaceae) in response to inundation.Ohio Journal of Science 100: 24–27.

    Google Scholar 

  • Flanagan, L. B., J. R. Ehleringer, andJ. D. Marshall. 1992. Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland.Plant, Cell and Environment 15:831–836.

    Article  Google Scholar 

  • Gul, B. andD. J. Weber. 1998. Effect of dormancy relieving compounds on the seed germination of non-dormantAllenrolfea occidentalis under salinity stress.Annals of Botany 82:555–560.

    Article  CAS  Google Scholar 

  • Huizinga, P. and L. van Niekerk. 1997. The effects of future changes in run-off on the Olifants Estuary. Physical Dynamic Conditions. Council for Scientific and Industrial Research Report ENV/S-C 97128. Stellenbosch, South Africa.

  • Jiao, J. J. andZ. Tang. 1999. An analytical solution of ground-water response to tidal fluctuation in a leaky confined aquifer.Water Resources Research 35:747–751.

    Article  Google Scholar 

  • Jolly, I. D. andG. R. Walker. 1996. Is the field use ofEucalyptus largiflorens F. Muell. affected by short-term flooding?Australian Journal of Ecology 21:173–183.

    Article  Google Scholar 

  • Jolly, I. D., G. R. Walker, andP. J. Thorburn. 1993. Salt accumulation in semi-arid floodplain soils with implications for forest health.Journal of Hydrology 150:89–614.

    Article  Google Scholar 

  • Khan, M. A. andI. A. Ungar. 1997. Effects of light salinity, and thermoperiod on the seed germination of halophytes.Canadian Journal of Botany 75:835–841.

    Google Scholar 

  • Krüger, H. R. andN. Peinemann. 1996. Coastal plain halophytes and their relation to soil ionic composition.Vegetatio 122:143–150.

    Article  Google Scholar 

  • Morales, M. A., J. J. Alarcon, A. Torrecillas, andM. J. Sanchez-Blanco. 2000. Growth and water relations ofLotus creticus creticus plants as affected by salinity.Biologia Plantarum 43:413–417.

    Article  CAS  Google Scholar 

  • Morant, P. D. andM. O'Callaghan. 1990. Some observations on the impact of the March 1988 flood on the biota of the Orange River mouth.Transactions of the Royal Society of South Africa 47:295–305.

    Article  Google Scholar 

  • Neill, C. 1993. Seasonal flooding, soil salinity and primary production in northern prairie marshes.Oecologia 95:499–505.

    Google Scholar 

  • Nielsen, P.. 1990. Tidal dynamics of the water table in beaches.Water Resources Research 26:2127–2134.

    Google Scholar 

  • Noe, G. B. andJ. B. Zedler. 2000. Differential effects of four abiotic factors on the germination of salt marsh annuals.American Journal of Botany 87:1679–1692.

    Article  Google Scholar 

  • Noe, G. B. andJ. B. Zedler. 2001a. Variable rainfall limits the germination of upper intertidal marsh plants in southern California.Estuaries 24:30–40.

    Article  Google Scholar 

  • Noe, G. B. andJ. B. Zedler. 2001b. Spatio-temporal variation of salt marsh seedling establishment in relation to the abiotic and biotic environment.Journal of Vegetation Science 12:61–74.

    Article  Google Scholar 

  • Onkware, A. O. 2000. Effect of soil salinity on plant distribution and production at Loburu delta, Lake Bogoria National Reserve, Kenya.Austral Ecology 25:140–149.

    Article  Google Scholar 

  • Pan, D., A. Bouchard, P. Legendre, andG. Domon. 1998. Influence of edaphic factors on the spatial structure of inland halophytic communities: A case study in China.Journal of Vegetation Science 9:797–804.

    Article  Google Scholar 

  • Rose, D. A. 1996. The dynamics of soil water following single surface wettings.European Journal of Soil Science 47:21–31.

    Article  Google Scholar 

  • Raubenheimer, B., R. T. Guza, andS. Elgar. 1999. Tidal water table fluctuations in a sandy ocean beach.Water Resources Research 35:2313–2320.

    Article  Google Scholar 

  • Sanchez, J. M., X. L. Otero, andJ. Izco. 1998. Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of northwest Spain.Plant Ecology 136:1–8.

    Article  Google Scholar 

  • Serfes, M. E. 1991. Determining the mean hydraulic gradient of ground water affected by tidal fluctuations.Ground Water 29:549–555.

    Article  Google Scholar 

  • Shumway, S. W. andM. D. Bertness. 1992. Salt stress limitation of seedling recruitment in a salt marsh plant community.Oecologia 92:490–497.

    Article  Google Scholar 

  • Slavich, P. G., K. S. Smith, S. D. Tyerman, andG. R. Walker. 1999a. Water use of grazed salt bush plantations with saline watertable.Agricultural Water Management 39:169–185.

    Article  Google Scholar 

  • Slavich, P. G., G. R. Walker, I. D. Jolly, T. J. Hatton, andW. R. Dawes. 1999b. Dynamics ofEucalyptus largiflorens growth and water use in response to modified watertable and flooding regimes on a saline floodplain.Agricultural Water Management 39:245–264.

    Article  Google Scholar 

  • Thorburn, P. J., G. R. Walker, andP. H. Woods. 1992. Comparison of diffuse discharge from shallow water tables in soils and salt flats.Journal of Hydrology 136:253–274.

    Article  Google Scholar 

  • Tobe, K., X. Li, andK. Omasa. 2000. Seed germination and radicle growth of a halophyte,Kalidium caspicum (Chenopodiaceae).Annals of Botany 85:391–396.

    Article  Google Scholar 

  • Turpie, J. K., J. B. Adams, A. Joubert, T. D. Harrison, B. M. Colloty, R. C. Maree, A. K. Whitfield, T. H. Wooldridge, S. J., Lamberth, S. Taljaard, andL. Van Niekerk. 2002 Assessment of the conservation priority status of South African estuaries for use in management and water allocation.Water SA 28:191–206.

    CAS  Google Scholar 

  • Ungar, I. A. 1991. Ecophysiology of Vascular Halophytes. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Ungar, I. A., D. K. Benner, andD. C. McGraw. 1979. The distribution and growth ofSalicornia europea on an inland salt pan.Ecology 60:327–336.

    Article  Google Scholar 

  • Yim, C. S. andM. F. N. Mohsen. 1992. Simulation of tidal effects on contaminant transport in porous media.Ground Water 30: 78–86.

    Article  CAS  Google Scholar 

  • Young, D. R. andP. S. Nobel. 1986. Predictions of soil-water potentials in the north-western Sonoran Desert.Journal of Ecology 74:143–154.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornman, T.G., Adams, J.B. & Bate, G.C. Freshwater requirements of a semi-arid supratidal and floodplain salt marsh. Estuaries 25, 1394–1405 (2002). https://doi.org/10.1007/BF02692233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02692233

Keywords

Navigation