Skip to main content
Log in

Role of the striatal cholinergic system in the regulation of learned manipulation in rats

  • Papers
  • Published:
Integrative Physiological and Behavioral Science Aims and scope Submit manuscript

Abstract

The experiments were performed on adult Wistar male rats trained to push with the forepaw on a fixed piston inside a narrow tube. It was found that after localized intracerebral injection of a cholinergic antagonist into the dorso-lateral (but not medial) neostriatum (i.e., the caudato-putamen) the behavioral performance requiring brief innate movements remained unchanged, but the performance requiring a prolonged pushing movement (> 50 msec) became disrupted. Microinjection of carbacholine (0.03-3 µ g/1 µ1) did not affect the performance of the acquired movements, whereas scopolamine (3 µ g/1 µ1) led to the significant decrease in pushing time. We conclude that changes in the state of the dorso-lateral neostriatal cholinergic system result only in disturbances of the sensory-controlled component of a complex instrumental movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie, E.D. and Jacombs, B. (1985). Dopaminergic modulation of sensory responses of striatal neurons: Single unit studies.Brain Res., 358: 27–33.

    Article  PubMed  Google Scholar 

  • Anden, N.E. and Bedard, P. (1971). Influence of cholinergic mechanisms on the function and turnover of brain dopamine.J. Pharm. Parmacol., 23: 460–462.

    Google Scholar 

  • Austin, M.C. and Kalivas, P.W. (1988). The effect of cholinergic stimulation in the nucleus accumbens on locomotor behavior.Brain Res., 441, 1/2: 209–214.

    Article  PubMed  Google Scholar 

  • Bracha, V., Zhuravin, I.A. and Burges, J. (1990). The reaching reaction in the rat: A part of the digging pattern?Behav. Brain Res., 36: 53–64.

    Article  PubMed  Google Scholar 

  • Brooks, V.B. (1986). The neural basis of motor control. N.Y.: Oxford University Press.

    Google Scholar 

  • Bures, J., Petran, M. and Zahar, J. (1967). Electrophysiological methods in biological research. Prague: Academia, 824.

    Google Scholar 

  • Bures, J., Buresova, O. and Krivanek, J. (1988). Brain and behavior. Paradigms for research in neuronal mechanisms. Prague: Academia.

    Google Scholar 

  • Costa, E., Cheney, D.L., Mao, C.C. and Mororie, F. (1978). Action of antischizophrenic drugs in metabolism of γ-aminobutyric acid and acetylcholine in globus pallidus, striatum and nucleus accumbens.Fed. Proc., 37: 2408.

    PubMed  Google Scholar 

  • Dunnett, S.B. (1985). Comparative effects of cholinergic drugs and lesions of nucleus basalis or fimbia-fornix on delayed matching in rats.Psychopharmacology, 87: 357–363.

    Article  PubMed  Google Scholar 

  • Fibiger, H.C. (1991). Cholinergic mechanisms in learning, memory and dementia: A review of recent evidence.Trends in Neuroscience, 14, 6: 220–223.

    Article  Google Scholar 

  • Fonnum, F. and Walaas, S. (1979). Localization of neurotransmitter candidates in neostriatum. In I. Divac & R.G. Oberg (Eds.),The Neostriatum. N.Y.: Pergamon Press, 53–69.

    Google Scholar 

  • Goldman-Rakic, P.S. and Selemon, L.D. (1986). Topography of corticostriatal projections in nonhuman primates and implications for functional parcellation of the neostriatum. InCerebral Cortex. London. 5: 447–466.

    Google Scholar 

  • Groves, P.M. (1983). A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement.Brain Res. Rev., 5: 109–132.

    Article  Google Scholar 

  • Hitzemann, R.J., Loh, H.H. and Domino, E. (1972). Effect of scopolamine on cerebral accumulation of14C-catecholamines from14C-tyrosine.Pharmacology, 8: 839–840.

    Google Scholar 

  • Kadantseva, A.G., Zhuravin, I.A., and Tolkunov, B.F. (1992). Overlapping projections of sensory and motor cortex into the neostriatum.J. Evol. Biochem. Physiol, 28, 1: 44–49.

    Google Scholar 

  • Kanazawa, I., Emson, P.C. and Cuello, A.C. (1977). Evidence for the existence of substance P-containing fibers in the striato-nigral and pallido-nigral pathways in rat brain.Brain Res., 119: 447–453.

    Article  PubMed  Google Scholar 

  • Kemp, J.M. and Powell, T.P.S. (1970). The cortico-striatal projection in the monkey.Brain, 93: 525–546.

    Article  PubMed  Google Scholar 

  • Lidsky, T.I., Manetto, C. and Schneider, J.S. (1985). A consideration of sensory factors involved in motor functions of the basal ganglia.Brain Res. Rev., 9: 133–146.

    Article  Google Scholar 

  • Miyamoto, M., Shintani, M., Nagaoka, A. and Nagawa, J. (1985). Lesions of the rat basal forebrain leads to memory impairments in passive and active avoidance tasks.Brain Res., 328: 97–104.

    Article  PubMed  Google Scholar 

  • McCormic, D.A. (1990). Cellular mechanisms of cholinergic control of neocortical and thalamic neuronal excitability. In M. Steriade & D. Biesold, (Eds.),Brain cholinergic systems. Oxford: Oxford University Press, 236–265.

    Google Scholar 

  • Peterson, G.M. (1934). Mechanisms of handedness in the rat.Comp. Phychol. Monogr. 9: 1–67.

    Google Scholar 

  • Pisa, M. (1988). Motor functions of the striatum in the rat: Critical role of the lateral region in tongue and forelimb reaching.Neuroscience, 24, 2: 453–463.

    Article  PubMed  Google Scholar 

  • Prado-Alcala, R.A. (1985). Is cholinergic activity of the caudate nucleus involved in memory?Life Science, 37, 23: 2135–2142.

    Article  Google Scholar 

  • Prado-Alcala, R., Fernandez-Samblancat, M. and Solodkin-Herrera, M. (1985). Injections of atropine into the Caudate Nucleus impair the acquisition and the maintenance of passive avoidance.Pharmacol. Biochemistry and Behavior, 22, 2: 243–247.

    Article  Google Scholar 

  • Ridly, R., Murray, T., Jonson, J. and Barker, H. (1986). Learning impairment following lesions of the basal nucleus of Meynert in the marmoset: Modification by cholinergic drug.Brain Research, 376, 1: 108–116.

    Article  Google Scholar 

  • Richardson, R. and DeLong, M. (1988). A reappraisal of the functions of the nucleus basalis of Meynert.Trends in Neuroscience, 11, 6: 264–267.

    Article  Google Scholar 

  • Satoh, K., Staines, W., Amada, S., and Fibiger, H. (1983). Ultrastructural observations of the cholinergic neuron in the rat striatum as identified by acetylcholinesterase pharmacohistorchemistry.Neuroscience, 10: 1121–1136.

    Article  PubMed  Google Scholar 

  • Schell-Kruger, I. (1985). New aspects of the functional role of acetylcholine in the basal ganglia. Interaction with other neurotransmitters. Central cholinergic mechanisms and adaptive dysfunctions. M. Singh, et al., (Eds.) N.Y.: Plenum Press, 105–140.

    Google Scholar 

  • Shapovalova, K. (1993). Possible mechanism of participation of the neostriatum in regulation of voluntary movement. Soviet scientific reviews/section F. T.M. Turpaev (Ed.), (Physiology and general biology reviews), 6, 3: 86.

    Google Scholar 

  • Shapovalova, K., Zhuravin, I., Pominova, E., Dubrovskaya, N. and Dyubkacheva, T. (1994). Sensor and motor components of different forms of trained movements under the alteration of the activity of neostriatal cholinergic system.Fiziologicheskij zhurnal of Russia. 80, 12: 34–44.

    Google Scholar 

  • Stadler, H., Lloyd, K.G., Gades-Ciria, M. and Bartholini, G. (1973). Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine.Brain Research, 55: 476–489.

    Article  PubMed  Google Scholar 

  • Turski, L., Havemann, U. and Kuschinsky, K. (1984). GABAergic mechanisms in mediating muscular rigidity, catalepsy and postural asymmetry in rats.Brain Research, 327: 49–57.

    Article  Google Scholar 

  • Vrijmoed de Vries, M. and Cools, A. (1986). Differential effects of striatal injections of dopaminergic, cholinergic and GABAergic drugs upon swimming behavior of rats.Brain Research, 364: 77–96.

    Article  PubMed  Google Scholar 

  • Wainer, B.H. and Mesulam, M. (1990). Ascending cholinergic pathways in the rat brain. Brain cholinergic system, M. Steriade & D. Biesold (Eds.), Oxford, N.Y.: Oxford University Press. 65–119.

    Google Scholar 

  • Wanquier, A. and Clinke, G.H. (1985). Functions of central cholinergic systems in the brain behavior. Central cholinergic mechanisms and adaptive dysfunctions. M. Singh, et al. (Eds.), N.Y.: Plenum Press, 63–103.

    Google Scholar 

  • York, D.N. (1979). The neurophysiology of dopamine receptors. InNeurobiology of Dopamine. London: Academic Press, 395.

    Google Scholar 

  • Zhuravin, I.A. and Bures, J. (1986). Operant slowing of the extension phase of the reaching movement in rats.Physiol. Behav., 36: 611–617.

    Article  PubMed  Google Scholar 

  • Zhuravin, I.A. (1988). Neurophysiological analysis of striatal integrative function. Leningrad (in Russian), 37.

  • Zhuravin, I.A., Bracha, V. and Bures, J. (1988). The influence of striatum on movements with different degree of sensory control. In Striatum and Behavior in Norm and Pathology, Leningrad (in Russian). 32–34.

  • Zhuravin, I., Nalivaeva, N. and Dubrovskaya, N. (1993). Exogenous ganglioside effect on the formation of rat instrumental movements with tactile control. Zh. Vysshei nervnoj deyatelnosti imeni I. P. Pavolva. (in Russian). 43, 6: 1129–1136.

    Google Scholar 

  • Zhuravin, I.A., Brozek, G. and Bures, J. (1994). Differential contribution of motor cortex and caudate nucleus to instrumental tongue-forelimb synchronization in rats: A functional ablation study.Neuroscience, 58: 193–200.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Zhuravin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubrovskaya, N.M., Zhuravin, I.A. Role of the striatal cholinergic system in the regulation of learned manipulation in rats. Integrative Physiological and Behavioral Science 30, 127–137 (1995). https://doi.org/10.1007/BF02691681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02691681

Keywords

Navigation