, Volume 25, Issue 2, pp 272–281 | Cite as

Denitrification and the stoichiometry of nutrient regeneration in Waquoit Bay, Massachusetts

  • Michael G. LaMontagneEmail author
  • Valeria Astorga
  • Anne E. Giblin
  • Ivan Valiela


To determine the removal of regenerated nitrogen by estuarine sediments, we compared sediment N2 fluxes to the stoichiometry of nutrient and O2 fluxes in cores collected in the Childs River, Cape Cod, Massachusetts. The difference between the annual PO4 3− (0.2 mol P m−2 yr−1) and NH4 + (1.6 mol N m−2 yr−1) flux and the Redfield N∶P ratio of 16 suggested an annual deficit of 1.5 mol N m−2 yr−1. Denitrification predicted from O2∶NH4 + flux ratios and measured as N2 flux suggested a nitrogen sink of roughly the same magnitude (1.4 mol N m−2 yr−1). Denitrification accounted for low N∶P ratios of benthic flux and removed 32–37% of nitrogen inputs entering the relatively highly nutrient loaded Childs River, despite a relatively brief residence time for freshwater in this system. Uptake of bottom water nitrate could only supply a fraction of the observed N2 flux. Removal of regenerated nitrogen by denitrification in this system appears to vary seasonally. Denitrification efficiency was inversely correlated with oxygen and ammonium flux and was lowest in summer. We investigated the effect of organic matter on denitrification by simulating phytoplankton deposition to cores incubated in the lab and by deploying chambers on bare and macroaglae covered sediments in the field. Organic matter addition to sediments increased N2 flux and did not alter denitrification efficiency. Increased N2 flux co-varied with O2 and NH4 + fluxes. N2 flux (261±60 μmol m−2 h−1) was lower in chambers deployed on macroalgal beds than deployed on bare sediments (458±70 μmol m−2 h−1), and O2 uptake rate was higher in chambers deployed on macroalgal beds (14.6±2.2 mmol m−2 h−1) than on bare sediments (9.6±1.5 mmol m−2 h−1). Macroalgal cover, which can retain nitrogen in the system, is a link between nutrient loading and denitrification. Decreased denitrification due to increasing macroalgal cover could create a positive feedback because decreasing denitrification would increase nitrogen availability and could increase macroalgae cover.


Marine Ecology Progress Series Bare Sediment Marine Biological Laboratory Macroalgal Cover Macroalgal Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Banta, G. T. 1992. Decomposition and nitrogen cycling in coastal marine sediments—Controls by temperature, organic matter inputs, and benthic macrofauna. Ph.D. Dissertation. Boston University, Boston, Massachusetts.Google Scholar
  2. Banta, G. T., A. E. Giblin, J. E. Hobbie, andJ. Tucker. 1995. Benthic respiration and nitrogen release in Buzzards Bay, Massachusetts.Journal of Marine Research 53:107–135.CrossRefGoogle Scholar
  3. Berelson, W. M., D. Heggie, A. Longmore, T. Kilgore, G. Nicholson, andG. Skyring. 1998. Benthic nutrient recycling in Port Phillip Bay, Australia.Estuarine Coastal and Shelf Science 46:917–934.CrossRefGoogle Scholar
  4. Bertuzzi, A., J. Faganeli, C. Welker, andA. Brambati. 1997. Benthic fluxes of dissolved inorganic carbon, nutrients and oxygen in the Gulf of Trieste (northern Adriatic).Water Air and Soil Pollution 99:305–314.Google Scholar
  5. Blackburn, N. D. andT. H. Blackburn. 1993. A reaction diffusion model of C−N−S−O species in a stratified sediment.FEMS Microbiology Ecology 102:207–215.CrossRefGoogle Scholar
  6. Blackburn, T. H. 1990. Denitrification model for marine sediment, p. 323–337.In N. P. Revsbech and J. Sørensen (eds.). Denitrification in Soil and Sediment. Plenum Press, New York.Google Scholar
  7. Boynton, W. R., J. H. Garber, R. Summers, andW. M. Kemp. 1995. Inputs, transformations, and transport of nitrogen and phosphorous in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.CrossRefGoogle Scholar
  8. Burdige, D. J. 1991. The kinetics of organic matter mineralization in anoxic marine sediments.Journal of Marine Research 49:727–761.CrossRefGoogle Scholar
  9. Burdige, D. J. andS. Zheng. 1998. The biogeochemical cycling of dissolved organic nitrogen in estuarine sediments.Limnology and Oceanography 43:1796–1813.Google Scholar
  10. Caffrey, J. M., N. P. Sloth, H. F. Kaspar, andT. H. Blackburn. 1993. Effect of organic loading on nitrification and denitrification in a marine sediment microcosm.FEMS Microbiology Ecology 12:159–167.CrossRefGoogle Scholar
  11. Cai, W.-J. andC. E. Reimers. 1995. Benthic oxygen flux, bottom water oxygen concentration and core toip organic carbon content in the deep northeast Pacific Ocean.Deep-Sea Research 1 42:1681–1699.CrossRefGoogle Scholar
  12. Caraco, N., J. Cole, andG. E. Likens. 1990. A comparison of phosphorous immobilization in sediments of freshwater and coastal marine systems.Biogeochemistry 9:277–290.CrossRefGoogle Scholar
  13. Christensen, P. B., L. P. Nielsen, J. Sørensen, andN. P. Revsbech. 1990. Denitrification in nitrate-rich streams: Diurnal and seasonal variation related to benthic oxygen metabolism.Limnology and Oceanography 35:640–651.Google Scholar
  14. Conley, D. J. andR. W. Johnstone. 1995. Biogeochemistry of N, P. and Si in Baltic Sea sediments: Response to a simulated deposition of a spring diatom bloom.Marine Ecology Progress Series 122:265–276.CrossRefGoogle Scholar
  15. Cowan, J. L. W. andW. R. Boynton. 1996. Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay: Seasonal patterns, controlling factors and ecological significance.Estuaries 19:562–580.CrossRefGoogle Scholar
  16. D’Avanzo, C. andJ. N. Kremer. 1994. Diel oxygen dynamics and anoxic events in a eutrophic estuary of Waquoit Bay, Massachusetts.Estuaries 17:131–139.CrossRefGoogle Scholar
  17. D’Avanzo, C., J. N. Kremer, andS. C. Wainright. 1996. Ecosystem production and respiration in response to eutrophication in shallow temperature estuaries.Marine Ecology Progress Series 141:263–274.CrossRefGoogle Scholar
  18. Devol, A. H. 1991. Direct measurement of nitrogen gas fluxes from continental shelf sediments.Nature 349:319–321.CrossRefGoogle Scholar
  19. Doering, P. H., C. A. Oviatt, B. L. Nowicki, E. G. Klos, andL. W. Reed. 1995. Phosphorus and nitrogen limitation of primary production in a simulated estuaring gradient.Marine Ecology Progress Series 124:271–287.CrossRefGoogle Scholar
  20. Dollar, S. J., S. V. Smith, S. M. Vink, S. Obrebski, andJ. T. Hollibaugh. 1991. Annual cycle of benthic nutrient fluxes in Tomales Bya, California, and contribution of the benthos to total ecosystem metabolism.Marine Ecology Progress Series 79:115–125.CrossRefGoogle Scholar
  21. Dornblaser, M. M., J. Tucker, G. T. Banta, K. H. Foreman, M. C. O’Brien, andA. Giblin. 1989. Obtaining undisturbed sediment cores for biogeochemical process studies using SCUBA, p. 97–104.In M. Lang and W. Jaap (eds.), Diving for Science 1989. Proceedings of the American Underwater Society 9th Annual Scientific Diving Symposium. American Academy of Underwater Sciences, Costa Mesa, California.Google Scholar
  22. Froelich, P. N. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism.Limnology and Oceanography 33:649–668.Google Scholar
  23. Giblin, A. E., C. S. Hopkinson, andJ. Tucker. 1997. Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts.Estuaries 20:346–364.CrossRefGoogle Scholar
  24. Gribble, K. 1993. Rates of decomposition estimated by NH4+ and DIC production in anoxic estuarine sediments of Childs River, MA. p. 1.In Library Archives. Marine Biological Laboratory, Woods Hole, Massachusetts.Google Scholar
  25. Hansen, L. S. andT. H. Blackburn. 1992. Effect of algal bloom deposition on sediment respiration and fluxes.Marine Biology 112:147–152.CrossRefGoogle Scholar
  26. Hersh, D. 1996. Abundance and Distribution of Intertidal and Subtidal Macrophytes in Cape Cod: The Role of Nutrient Supply and Other Controls. Ph.D. Dissertation. Boston University, Boston, Massachusetts.Google Scholar
  27. Hopkinson, C. S., A. E. Giblin, J. Tucker, andR. H. Garritt. 1999. Benthic metabolism and nutrient cycling along an estuarine salinity gradient.Estuaries 22:863–881.CrossRefGoogle Scholar
  28. Howarth, R. W. 1988. Nutrient limitation of net primary production in marine ecosystems.Annual Review Ecology and Systematics 19:89–110.CrossRefGoogle Scholar
  29. Hurlbut, P., C. D’Avanzo, D. Sethi, andK. Guilfoyle. 1994. Effects of algal biomass on benthic nitrogen flux in nutrientloaded estuaries of Waquoit Bay, Massachusetts.Biological Bulletin 187:283–284.Google Scholar
  30. Jørgensen, B. B. 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark).Limnology and Oceanography 22:814–832.Google Scholar
  31. Jørgensen, K. S. 1989. Annual pattern of denitrification and nitrate ammonification in estuarine sediment.Applied and Environmental Microbiology 55:1841–1847.Google Scholar
  32. Kemp, W. M., P. Sampou, J. Caffrey, M. Mayer, K. Henriksen, andW. R. Boynton. 1990. Ammonium recycling versus denitrification in Chesapeake Bay sediments.Limnology and Oceanography 35:1545–1563.Google Scholar
  33. Kirkpatrick, J., K. Foreman, andI. Valiela. 1998. Dissolved inorganic nitrogen flux and mineralization in Waquoit Bay sediments as measured by core incubations.Biological Bulletin 195:240–241.CrossRefGoogle Scholar
  34. Krause-Jensen, D., P. B. Christensen, andS. Rysgaard. 1999. Oxygen and nutrient dynamics within mats of the filamentous macroalgaChaetomorpha linum.Estuaries 22:31–38.CrossRefGoogle Scholar
  35. Krom, M. D. andR. A. Berner. 1980. The diffusion coefficients of sulfate, ammonium, and phosphate ions in anoxic marine sediments.Limnology and Oceanography 25:327–337.Google Scholar
  36. LaMontagne, M. G. 1996. Denitrification and the stoichiometry of organic matter degradation in temperature estuarine sediments: Seasonal pattern and significance as a nitrogen sink, Ph.D. Dissertation. Boston University, Boston, Massachusetts.Google Scholar
  37. LaMontagne, M. G. andI. Valiela. 1995. Denitrification measured by a direct N2 flux method in sediments of Waquoit Bay, MA.Biogeochemistry 31:63–83.CrossRefGoogle Scholar
  38. Lomstein, B. A., A.-G. U. Jensen, J. W. Kansen, J. B. Andreasen, L. S. Hansen, J. Berntsen, andH. Kunzendorf. 1998. Budgets of sediment nitrogen and carbon cycling in the shallow water of Knebel Vig, Denmark.Aquatic Microbial Ecology 14:69–80.CrossRefGoogle Scholar
  39. McDonnell, K., M. Rudy, I. Valiela, andK. Foreman. 1994. The effect of coastal land use on inorganic nutrient concentrations in groundwater entering estuaries of Waquoit Bay, Massachusetts.Biological Bulletin 187:276–277.Google Scholar
  40. Nielsen, K., L. P. Nielsen, andP. Rasmussen. 1995. Estuarine nitrogen retention independently estimated by the denitrification rate and mass balance methods: A study of Norsminde Fjord, Denmark.Marine Ecology Progress Series 119:275–283.CrossRefGoogle Scholar
  41. Nixon, S. W., J. W. Ammerman, L. P. Atkinson, V. M. Berounsky, G. Billen, W. C. Boicourt, W. R. Boynton, T. M. Church, D. M. Ditoro, R. Elmgren, J. H. Garber, A. E. Giblin, R. A. Jahnke, N. J. P. Owens, M. E. Q. Pilson, andS. P. Seitzinger. 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean.Biogeochemistry 35:141–180.CrossRefGoogle Scholar
  42. Nixon, S. W., C. A. Oviatt, J. Frithsen, andB. Sullivan. 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems.Journal of the Limnology Society of South Africa 12:43–71.Google Scholar
  43. Nowicki, B. L., E. Requintina, D. Van Keuren, andJ. Portnoy. 1999. The role of sediment denitrification in reducing groundwater-derived nitrate inputs to Nauset Marsh estuary, Cape Cod, Massachusetts.Estuaries 22:245–259.CrossRefGoogle Scholar
  44. Peckol, P., B. DeMeo-Anderson, J. Rivers, I. Valiela, M. Maldonado, andJ. Yates. 1994. Growth, nutrient uptake capacities and tissue constituents of the macroalgaeCladophora vagabunda andGracilaria tikvahiae related to site-specific nitrogen loading rates.Marine Biology 121:175–185.CrossRefGoogle Scholar
  45. Rizzo, W. M. 1990. Nutrient exchanges between the water column and a subtidal benthic microalgal community.Estuaries 13:219–226.CrossRefGoogle Scholar
  46. Rysgaard, S., N. Risgaard-Petersen, N. P. Sloth, K. Jensen, andL. P. Nielsen. 1994. Oxygen regulation of nitrification and denitrification in sediments.Limnology and Oceanography 39:1643–1652.CrossRefGoogle Scholar
  47. Ryther, J. H. andW. M. Dunstan. 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment.Science 171:1008–1013.CrossRefGoogle Scholar
  48. Setzinger, S. P. 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance.Limnology and Oceanography 33:702–724.Google Scholar
  49. Seitzinger, S. P. 1990. Denitrification in aquatic sediments, p. 301–322.In N. P. Revsbech and J. Sørensen (eds.), Denitrification in Soil and Sediment. Plenum Press, New York.Google Scholar
  50. Slomp, C. P., J. F. P. Malschaert, andW., Van Raaphorst. 1998. The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediments.Limnology and Oceanography 43:832–846.CrossRefGoogle Scholar
  51. Sloth, N. P., H. Blackburn, L. S. Hansen, N. Risgaard-Petersen, andB. A. Lomstein. 1995. Nitrogen cycling in sediments with different organic loading.Marine Ecology Progress Series 116:163–170CrossRefGoogle Scholar
  52. Sundby, B., L. G. Anderson, P. O. J. Hall, A. Iverfeldt, M. M. Rutgers Van der Loeff, andS. F. G. Westerlund. 1986. The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface.Geochimica et Cosmochimica Acta 50:1281–1288.CrossRefGoogle Scholar
  53. Sundby, B., C. Gobeil, N. Silverberg, andA. Mucci. 1992. The phosphorus cycle in coastal marine sediments.Limnology and Oceanography 37:1129–1145.CrossRefGoogle Scholar
  54. Tomasky, G. andI. Valiela. 1995. Nutrient limitation of phytoplankton growth in Waquoit Bay, Massachusetts.Biological Bulletin 189:257–258.Google Scholar
  55. Trimmer, M., D. B. Nedwell, D. B. Sivyer, andS. J. Malcolm. 1998. Nitrogen fluxes through the lower estuary of the river Great Ouse, England: The role of the bottom sediments.Marine Ecology Progress Series 163:109–124.CrossRefGoogle Scholar
  56. Valiela, I., K. Foreman, M. G. LaMontagne, D. Hersh, J. Costa, P. Peckol, B. Demeo-Anderson, C. D’Avanzo, M. Babione, C.-H. Sham, J. Brawley, andK. Lajtha. 1992. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts.Estuaries 15:443–457.CrossRefGoogle Scholar
  57. Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, andK. Foreman. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences.Limnology and Oceanography 42:1105–1118.CrossRefGoogle Scholar
  58. Walker, R. W. andW. J. Snodgrass. 1986. Model for sediment demand in lakes.Journal of Environmental Quality Engineering 112:25–43.CrossRefGoogle Scholar
  59. Yoon, W. B. andR. Benner. 1992. Denitrification and oxygen consumption in sediments of two south Texas estuaries.Marine Ecology Progress Series 90:157–167.CrossRefGoogle Scholar
  60. Zimmerman, A. R. andR. Benner. 1994. Denitrification nutrient regeneration and carbon mineralization in sediment of Galveston Bay, Texas, USA.Marine Ecology Progress Series 114:275–288.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Bowen, J. unpublished data. Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543.Google Scholar
  2. Foreman, K. unpublished data. Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543.Google Scholar
  3. LaMontagne, M. G. unpublished data. Data are available at Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  • Michael G. LaMontagne
    • 1
    Email author
  • Valeria Astorga
    • 2
  • Anne E. Giblin
    • 3
  • Ivan Valiela
    • 1
  1. 1.Marine Biological LaboratoryBoston University Marine ProgramWoods Hole
  2. 2.Department of EcologyUniversity of BarcelonaBarcelonaSpain
  3. 3.Marine Biological LaboratoryEcosystems CenterWoods Hole

Personalised recommendations