Skip to main content
Log in

High-performance liquid chromatography of nucleic acid constituents: Chromatographic examination of novel stationary phases

  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Silica-bonded stationary phases were developed for the separation of nucleic acid constituents and their properties investigated with homologous oligoriboadenylic acids in electrostatic interaction chromatography and with alkylbenzenes in reversed-phase chromatography. Analysis of retention data confirmed the stratified molecular structure of the surface which consist of a layer of propyl chains anchoredvia siloxane bridges to the silica surface proper and of polar moieties attached to the hydrocarbonaceous functions. The polar top layer contains weak cationic and/or hydrophobic binding sites, is strongly hydrated in contact with aqueous eluents and bars the access by large biopolymers to the hydrocarbonaceous sublayer. In reversed-phase chromatography of small non polar molecules with hydro-organic eluents, however, this layer is accessible and engenders a retentive behavior typical for weak hydro-carbonaceous bonded phases. As a result the stationary phases, depending on the nature of the sample and the mobile phase, exhibit the properties of "soft" phases for the chromatography of biopolymers under mild elution conditions and those of "hard" phases for the separation of small non-polar molecules under conditions generally employed in reversed-phase chromatography. The retention of nucleic acid constituents on most of the stationary phases investigated subject to a dual mechanism as a result of the interplay of electrostatic and hydrophobic interactions between the eluites and the binding sites on the stationary phase surface. Siliceous stationary phases having surface morphology described above are suitable for the separation of nucleic acid constituents having widely ranging molecular weights up to 3 × 106 Daltons provided the support has appropriate pore dimensions. This is demonstrated by the separation of mixtures arising from digesting t-RNApha or polyadenylic acids as well as those of ribosomal RNA’s and different forms of the plasmid pBR322 DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cs. Horváth, B. A. Preiss, S. R. Lipsky, Anal. Chem.,39, 1422 (1969).

    Article  Google Scholar 

  2. H. A. Scoble, P. R. Brown, inCs. Horváth (editor), “High-Performance Liquid Chromatography. Advances and Perspectives”, Vol. 3, Academic Press, New York, NY, 1983, pp. 1–47.

    Google Scholar 

  3. G. M. Tener, Methods Enzymol.,12, 398 (1967).

    Google Scholar 

  4. M. Staehelin, Progr. Nucl. Acid. Res.,2, 169 (1963).

    CAS  Google Scholar 

  5. H. Schott, J. Chromatogr.,237, 429 (1982).

    Article  CAS  Google Scholar 

  6. R. D. Wells, S. C. Hardies, G. T. Horn, B. Klein, J. E. Larson, S. K. Nevendorf, N. Panavotatos, R. K. Patient, E. Seling, Methods Enzymol.,65, 327 (1980).

    Article  CAS  Google Scholar 

  7. J. F. Burd, J. E. Larson, R. D. Wells, J. Biol. Chem.,250, 6002 (1975).

    CAS  Google Scholar 

  8. R. Bischoff, L. W. McLaughlin, J. Chromatogr.,296, 329 (1984).

    Article  CAS  Google Scholar 

  9. A. Landy, C. Foeller, R. Reszelbach, B. Dudock, Nucl. Acid. Res3, 2575 (1976).

    CAS  Google Scholar 

  10. H. Eshaghpour, D. M. Crothers, Nucl. Acid. Res.,5, 2297 (1978).

    Article  Google Scholar 

  11. S. C. Hardies, R. D. Wells, Proc. Natl. Acad. Sci. U.S.A.,73, 3317 (1976).

    Article  Google Scholar 

  12. G. D. McFarland, P. N. Borer, Nucl. Acid. Res.,7, 1067 (1979).

    Article  CAS  Google Scholar 

  13. Z. El Rassi, Cs. Horváth, inI. Molnár (editor), “Practical Aspects of Modern High Performance Liquid Chromatography”, Walter de Gruyter, Berlin, New York, 1982, pp. 1–14.

    Google Scholar 

  14. W. Haupt, A. Pingoud, J. Chromatogr.,260, 419 (1983).

    Article  CAS  Google Scholar 

  15. S. Garcia, J. P. Liautard, J. Chromatogr. Sci.,21, 398 (1983).

    CAS  Google Scholar 

  16. S. Garcia, J. P. Liautard, J. Chromatogr.,296, 355 (1984).

    Article  CAS  Google Scholar 

  17. M. H. Simonian, M. W. Capp, J. Chromatogr.,266, 351 (1983).

    Article  CAS  Google Scholar 

  18. Y. Kato, M. Sasaki, T. Hashimoto, T. Murotsu, S. Fukushige, K. Matsubara, J. Chromatogr.,266, 341 (1983).

    Article  CAS  Google Scholar 

  19. Y. Kato, M. Sasaki, T. Hashimoto, T. Murotsu, S. Fukushige, K. Matsubara, J. Biochem.,95, 83 (1984).

    CAS  Google Scholar 

  20. L. Graeve, W. Goemann, P. Foldi, J. Kruppa, Biochem. biophys. Res. Comm.,107, 1559 (1982).

    Article  CAS  Google Scholar 

  21. L. Graeve, J. Kruppa, P. Foldi, J. Chromatogr.,268, 506 (1983).

    Article  CAS  Google Scholar 

  22. S. Uchiyama, T. Imamura, S.-I. Nagai, K. Konish, J. Biochem.,90, 643 (1981).

    CAS  Google Scholar 

  23. W. Jost, K. K. Unger, R. Lipecky, H. G. Gassen, J. Chromatogr.,185, 403 (1979).

    Article  CAS  Google Scholar 

  24. L. W. McLaughlin, E. Graeser, J. Liq. Chromatogr.,5, 2061 (1982).

    Article  CAS  Google Scholar 

  25. R. Bischoff, L. W. McLaughlin, J. Chromatogr.,270, 117 (1983).

    Article  CAS  Google Scholar 

  26. M. J. Gait, R. C. Sheppard, Nucl. Acid. Res.,4, 4391 (1977).

    Article  CAS  Google Scholar 

  27. J. D. Pearson, F. E. Regnier, J. Chromatogr.,255, 137 (1983).

    Article  CAS  Google Scholar 

  28. T. G. Lawson, F. E. Regnier, H. L. Weuth, Anal. Biochem.,133, 85 (1983).

    Article  CAS  Google Scholar 

  29. Y. Kato, M. Sasaki, T. Hashimoto, T. Murotsu, S. Fukushige, K. Matsubara, J. Chromatogr.,265, 342 (1983).

    Article  CAS  Google Scholar 

  30. M. Colpan, D. Riesner, J. Chromatogr.,296, 339 (1984).

    Article  CAS  Google Scholar 

  31. M. Colpan, J. Schumacher, W. Bruggemann, H. L. Sanger, D. Riesener, Anal. Biochem.,131, 257 (1983).

    Article  CAS  Google Scholar 

  32. Z. El Rassi, Cs. Horváth, in preparation.

  33. W. R. Melander, Cs. Horváth, Chromatographia,15, 86 (1982).

    Article  CAS  Google Scholar 

  34. Cs. Horváth, W. R. Melander, I. Molnár, J. Chromatogr.,125, 129 (1976).

    Article  Google Scholar 

  35. W. R. Melander, J. Stoveken, Cs. Horváth, J. Chromatogr.,199, 35 (1980).

    Article  CAS  Google Scholar 

  36. Z. El Rassi, Cs. Horváth, Chromatographia,15, 75 (1982).

    Article  Google Scholar 

  37. Z. El Rassi, Unpublished results.

  38. T. H. Mourey, G. A. Smith, L. R. Snyder, Anal. Chem.,56, 1773 (1984).

    Article  CAS  Google Scholar 

  39. W. R. Melander, Cs. Horváth, Arch. Biochem. Biophys.,183, 200 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Rassi, Z., Horváth, C. High-performance liquid chromatography of nucleic acid constituents: Chromatographic examination of novel stationary phases. Chromatographia 19, 9–18 (1984). https://doi.org/10.1007/BF02687714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02687714

Key Words

Navigation