Skip to main content
Log in

Protective effect of selenium on protein-undernutrition-induced brain damage in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of ad libitum ingestion of selenium (Se) in drinking water (0.15 mg SeO2/L) for 3 wk on the brain weight, total brain protein, glutathione (GSH) level, catalase activity, and lipid peroxidation in the brain of protein-undernourished (PU) rats was investigated, in an attempt to determine whether antioxidants alone can reverse some of the neuropathological changes associated with protein undernutrition in rats. Feeding on a normal diet (16% casein) by well-fed rats or a low-protein diet (5% casein) by PU rats and Se-treated PU rats lasted 14 wk. Setreated PU rats were given Se in drinking water during the last 3 wk of the experiment. Results show that protein undernutrition induced significant reductions (p<0.001) in brain weight, total brain protein, and catalase activity (p<0.05) while it induced a significant increase (p<0.05) in lipid peroxidation when compared with well-nourished rats; but no significant effect was observed for the GSH level. However, the ingestion of Se in drinking water by PU rats for 3 wk resulted in significant increases (p<0.05) in brain weight, catalase activity, and total brain protein but induced a significant reduction (p<0.05) in lipid peroxidation when compared with PU rats given water. The values obtained for Setreated PU rats are comparable with those obtained for well-nourished rats. The GSH level was, however, not affected by Se ingestion. We suggest that Se, by inducing increases in the concentration of certain proteins, including catalase, in the brain, abolished some of the pathological changes associated with protein undermutrition in the brain, and appears as a promising antioxidant in the prevention and management of pro-oxidant-induced brain damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Rukmini, B. D'Souza, and V. D'Souza, Superoxide dismutase and catalase activities and their correlation with malondialhehyde in schizophrenic patients, Indian J. Clin. Biochem. 19, 114–118 (2004).

    CAS  Google Scholar 

  2. L. T. McGrath, B. M. McGleenon, B. Brennan, D. McColl, S. MclLroy, and A. P. Passmore, Increased oxidative stress in Alzheimer's disease as assessed with 4-hydroxynonenal but not malondialdehyde. Q. J. Med. 94, 485–490 (2001).

    CAS  Google Scholar 

  3. A. Castegna, M. Aksenov, V. Thongboonkerd, et al., Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain, Naff Symposium Posters, No. 9 2003.

  4. M. A. Levy, B. Sikorski, and T. M. Bray, Selective elevation of glutathione levels in target tissues with l-2-oxothiazolidine-4-carboxylate (OTC) protects against hyperoxia induced lung damage in protein-energy malnourished rats: implications for a new treatment strategy, J. Nutr. 128, 671–676 (1998).

    PubMed  CAS  Google Scholar 

  5. G. A. Adenuga, The Ca2+-transporting activity of rat liver microsomes in response to protein-undernutrition: implications for liver tumor promotion, Biosci. Rep. 20, 93–98 (2001).

    Article  Google Scholar 

  6. D. A. Levitsky and B. J. Strupp, Malnutrition and the brain: changing concepts, changing concerns, J. Nutr. 125, 22, 12S-22, 20S (1995).

    Google Scholar 

  7. H. Lenhartz, R. Ndasi, A. Anninos, et al., The clinical manifestation of Kwashiorkor Syndrome is related to increased lipid peroxidation, J. Pediatr. 132, 879–881 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. T. M. Bray and C. G. Taylor, Enhancement of tissue glutathione for antioxidant and immune function in malnutrition, Biochem. Pharmacol. 47, 2113–2123 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. J. O. Olowookere, Bioenergetics of Kwashiorkor and Obesity, Triumph Books, Ijebu-Ode, Nigeria, pp. 139–143 (1994).

    Google Scholar 

  10. K. J. Wedekind, S. Yu, and G. F. Combs, The selenium requirement of the puppy, J. Anim. Physiol. Anim. Nutr. (Berl). 88, 340–347 (2004).

    Article  CAS  Google Scholar 

  11. R. Varshney and R. F. Kale, Effect of calmodulin antagogists on radiation induced lipid peroxidation in microsomes, Int. J. Radial. Biol. 58, 733–743 (1990).

    Article  CAS  Google Scholar 

  12. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and N. J. Randall, Protein measurement with folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  13. E. Beutler, D. Duron, and B. M. Kelly, Improved method for the determination of blood glutathione, J. Lab. Clin. Med. 61, 882–888 (1963).

    PubMed  CAS  Google Scholar 

  14. K. A. Sinha, Colorimetric assay of catalase, Anal. Biochem. 47, 389–394 (1972).

    Article  PubMed  CAS  Google Scholar 

  15. P. J. Morgane, R. Austin-La France, J. Bronzino, et al., Prenatal malnutrition and developmental of the brain, Neurosci. Biobehav. Rev. 17, 91–128 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. C. Sarkar, S. Roy, and G. Gopinath, Effects of neonatal undernutrition on the brain, Proc. Indian Natl. Sci. Acad. B: Biol. Sci. 56, 29–36 (1990).

    Google Scholar 

  17. M. Rayman, The importance of selenium to human health, Lancet 356, 9225 (2000).

    Article  Google Scholar 

  18. M. A. Levy and T. M. Bray, The antioxidant function of dietary zinc and protection against neural disorders, Linus pauling Institute Research Reports (2003).

  19. C. Behl and B. Moosmann, Antioxidant neuroprotection in Alzheimer's disease as preventive and therapeutic approach, Free Radical Biol. Med. 33, 182–191 (2002).

    Article  CAS  Google Scholar 

  20. M. P. Mattson, W. Duan, W. A. Pedersen, and C. Culmsee, Neurodegenerative disorders and Ischemic brain diseases, Apoptosis 6, 69–81 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. L. M. Ambani, M. H. Van Woert, and S. Murphy, Brain peroxidase and Parkinson disease, Arch Neurol. 32, 114 (1975).

    PubMed  CAS  Google Scholar 

  22. M. Y. Aksenov, H. M. Tucker, P. Nair, et al., The expression of key oxidative stress-handling genes in different brain regions in Alzheimer's disease, J. Mol. Neurosci. 11, 151–164 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. K. Batcioglu, A. A. Karagozler, I. C. Ozturk, et al., Comparison of chemopreventive effects of vitamin E plus selenium versus melatonin in 7,12-dimethylbenz(a)anthracene-induced mouse brain damage, Cancer Detect. Prev. 29, 54–58 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. S. Chakrabati and R. Shankar, Lipid peroxidation in developing rat brain during undernutrition, Neurosci. Lett. 48, 109–113 (1984).

    Article  Google Scholar 

  25. E. J. Sambuichi, A. Lai, Y. Kido, F. Shizuka, and K. Kishi, Protein deficiency and excess lipid synergistically augmented lipid peroxidation in growing rats, Tokushima J. Exp. Med. 39, 81–87 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adebayo, O.L., Adenuga, G.A. Protective effect of selenium on protein-undernutrition-induced brain damage in rats. Biol Trace Elem Res 116, 227–234 (2007). https://doi.org/10.1007/BF02685933

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685933

Index Entries

Navigation