Skip to main content
Log in

Comparison of Sodium Selenite and Selenium-Enriched Spirulina Supplementation Effects After Selenium Deficiency on Growth, Tissue Selenium Concentrations, Antioxidant Activities, and Selenoprotein Expression in Rats

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium contributes to physiological functions through its incorporation into selenoproteins. It is involved in oxidative stress defense. A selenium deficiency results in the onset or aggravation of pathologies. Following a deficiency, the repletion of selenium leads to a selenoprotein expression hierarchy misunderstood. Moreover, spirulina, a microalga, exhibits antioxidant properties and can be enriched in selenium.. Our objective was to determine the effects of a sodium selenite or selenium-enriched spirulina supplementation. Thirty-two female Wistar rats were fed for 12 weeks with a selenium-deficient diet. After 8 weeks, rats were divided into 4 groups and were fed with water, sodium selenite (20 μg Se/kg body weight), spirulina (3 g/kg bw), or selenium-enriched spirulina (20 μg Se/kg bw + 3 g spirulina/kg bw). Another group of 8 rats was fed with normal diet during 12 weeks. Selenium concentration and antioxidant enzyme activities were measured in plasma, urine, liver, brain, kidney, heart, and soleus. Expression of GPx (1, 3), Sel (P, S, T, W), SEPHS2, TrxR1, ApoER2, and megalin were quantified in liver, kidney, brain, and heart. We showed that a selenium deficiency leads to a growth delay, reversed by selenium supplementation despite a minor loss of weight in week 12 for SS rats. All tissues displayed a decrease in selenium concentration following deficiency. The brain seemed protected. We demonstrated a hierarchy in selenium distribution and selenoprotein expression. A supplementation of sodium selenite improved GPx activities and selenoprotein expression while a selenium-enriched spirulina was more effective to restore selenium concentration especially in the liver, kidney, and soleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Flohe L, Günzler W, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32(1):132–134. https://doi.org/10.1016/0014-5793(73)80755-0

    Article  CAS  PubMed  Google Scholar 

  2. Rayman MP (2000) The importance of selenium to human health. Lancet Lond Engl 356:233–241. https://doi.org/10.1016/S0140-6736(00)02490-9

    Article  CAS  Google Scholar 

  3. Hariharan S, Dharmaraj S (2020) Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology 28:667–695. https://doi.org/10.1007/s10787-020-00690-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Met Integr Biometal Sci 6:25–54. https://doi.org/10.1039/c3mt00185g

    Article  CAS  Google Scholar 

  5. Ye R, Huang J, Wang Z et al (2022) The role and mechanism of essential selenoproteins for homeostasis. Antioxidants 11:973. https://doi.org/10.3390/antiox11050973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim T, Jeong D, Yun BY, Kim IY (2002) Dysfunction of rat liver mitochondria by selenite: induction of mitochondrial permeability transition through thiol-oxidation. Biochem Biophys Res Commun 294:1130–1137. https://doi.org/10.1016/S0006-291X(02)00612-5

    Article  CAS  PubMed  Google Scholar 

  7. Dikiy A, Novoselov SV, Fomenko DE et al (2007) SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46:6871–6882. https://doi.org/10.1021/bi602462q

    Article  CAS  PubMed  Google Scholar 

  8. Burk RF, Hill KE, Motley AK et al (2006) Deletion of selenoprotein P upregulates urinary selenium excretion and depresses whole-body selenium content. Biochim Biophys Acta 1760:1789–1793. https://doi.org/10.1016/j.bbagen.2006.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rueli RHLH, Torres DJ, Dewing AST et al (2017) Selenoprotein S reduces endoplasmic reticulum stress-induced phosphorylation of tau: potential role in selenate mitigation of tau pathology. J Alzheimers Dis JAD 55:749–762. https://doi.org/10.3233/JAD-151208

    Article  CAS  PubMed  Google Scholar 

  10. Loscalzo J (2014) Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med 370:1756–1760. https://doi.org/10.1056/NEJMcibr1402199

    Article  CAS  PubMed  Google Scholar 

  11. Oropeza-Moe M, Wisløff H, Bernhoft A (2015) Selenium deficiency associated porcine and human cardiomyopathies. J Trace Elem Med Biol 31:148–156. https://doi.org/10.1016/j.jtemb.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  12. Shimada BK, Alfulaij N, Seale LA (2021) The impact of selenium deficiency on cardiovascular function. Int J Mol Sci 22:10713. https://doi.org/10.3390/ijms221910713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lai H, Nie T, Zhang Y et al (2021) Selenium deficiency-induced damage and altered expression of mitochondrial biogenesis markers in the kidneys of mice. Biol Trace Elem Res 199:185–196. https://doi.org/10.1007/s12011-020-02112-z

    Article  CAS  PubMed  Google Scholar 

  14. Han J, Liang H, Yi J et al (2016) Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS 34:1–9. https://doi.org/10.1016/j.jtemb.2015.11.003

    Article  CAS  Google Scholar 

  15. Xu J, Gong Y, Sun Y et al (2020) Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages. Biol Trace Elem Res 194:237–243. https://doi.org/10.1007/s12011-019-01775-7

    Article  CAS  PubMed  Google Scholar 

  16. Li S, Zhao Q, Zhang K et al (2021) Selenium deficiency-induced pancreatic pathology is associated with oxidative stress and energy metabolism disequilibrium. Biol Trace Elem Res 199:154–165. https://doi.org/10.1007/s12011-020-02140-9

    Article  CAS  PubMed  Google Scholar 

  17. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16:705–743. https://doi.org/10.1089/ars.2011.4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Xu Y, Chen B et al (2022) Selenium deficiency promotes oxidative stress-induced mastitis via activating the NF-κB and MAPK pathways in dairy cow. Biol Trace Elem Res 200:2716–2726. https://doi.org/10.1007/s12011-021-02882-0

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Zhao Q, Zhang K et al (2020) Se deficiency induces renal pathological changes by regulating selenoprotein expression, disrupting redox balance, and activating inflammation. Metallomics 12:1576–1584. https://doi.org/10.1039/D0MT00165A

    Article  CAS  PubMed  Google Scholar 

  20. Carlson BA, Xu X-M, Gladyshev VN, Hatfield DL (2005) Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. J Biol Chem 280:5542–5548. https://doi.org/10.1074/jbc.M411725200

    Article  CAS  PubMed  Google Scholar 

  21. Lei XG, Evenson JK, Thompson KM, Sunde RA (1995) Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J Nutr 125:1438–1446. https://doi.org/10.1093/jn/125.6.1438

    Article  CAS  PubMed  Google Scholar 

  22. Khan Z, Bhadouria P, Bisen PS (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 6:373–379. https://doi.org/10.2174/138920105774370607

    Article  CAS  PubMed  Google Scholar 

  23. Chei S, Oh H-J, Song J-H et al (2020) Spirulina maxima extract prevents activation of the NLRP3 inflammasome by inhibiting ERK signaling. Sci Rep 10:2075. https://doi.org/10.1038/s41598-020-58896-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang MS, Moon J-H, Park SC et al (2021) Spirulina maxima reduces inflammation and alveolar bone loss in Porphyromonas gingivalis-induced periodontitis. Phytomedicine Int J Phytother Phytopharm 81:153420. https://doi.org/10.1016/j.phymed.2020.153420

    Article  CAS  Google Scholar 

  25. Wu L, Ho JA, Shieh M-C, Lu I-W (2005) Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. J Agric Food Chem 53:4207–4212. https://doi.org/10.1021/jf0479517

    Article  CAS  PubMed  Google Scholar 

  26. Bermejo-Bescós P, Piñero-Estrada E, Villar del Fresno AM (2008) Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells. Toxicol Vitro Int J Publ Assoc BIBRA 22:1496–1502. https://doi.org/10.1016/j.tiv.2008.05.004

    Article  CAS  Google Scholar 

  27. Wang J, Su L, Zhang L et al (2022) Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress. J Zhejiang Univ Sci B 23:481–501. https://doi.org/10.1631/jzus.B2100988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bin-Jumah MN, Al-Huqail AA, Abdelnaeim N et al (2021) Potential protective effects of Spirulina platensis on liver, kidney, and brain acrylamide toxicity in rats. Environ Sci Pollut Res Int 28:26653–26663. https://doi.org/10.1007/s11356-021-12422-x

    Article  CAS  PubMed  Google Scholar 

  29. Li Z-Y, Guo S-Y, Li L (2003) Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresour Technol 89:171–176

    Article  CAS  PubMed  Google Scholar 

  30. Ross SW, Dalton DA, Kramer S, Christensen BL (2001) Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen. Comp Biochem Physiol Part C Toxicol Pharmacol 130:289–303. https://doi.org/10.1016/S1532-0456(01)00243-5

    Article  CAS  Google Scholar 

  31. Farhat F, Dupas J, Amérand A et al (2015) Effect of exercise training on oxidative stress and mitochondrial function in rat heart and gastrocnemius muscle. Redox Rep Commun Free Radic Res 20:60–68. https://doi.org/10.1179/1351000214Y.0000000105

    Article  CAS  Google Scholar 

  32. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  PubMed  Google Scholar 

  33. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    Article  CAS  PubMed  Google Scholar 

  34. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hurt HD, Cary EE, Allaway WH, Visek WJ (1971) Effect of dietary selenium on the survival of rats exposed to chronic whole body irradiation. J Nutr 101:363–366. https://doi.org/10.1093/jn/101.3.363

    Article  CAS  PubMed  Google Scholar 

  36. Ewan RC (1976) Effect of selenium on rat growth, growth hormone and diet utilization. J Nutr 106:702–709. https://doi.org/10.1093/jn/106.5.702

    Article  CAS  PubMed  Google Scholar 

  37. Nogales F, Ojeda ML, Fenutría M et al (2013) Role of selenium and glutathione peroxidase on development, growth, and oxidative balance in rat offspring. Reprod Camb Engl 146:659–667. https://doi.org/10.1530/REP-13-0267

    Article  CAS  Google Scholar 

  38. Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE (2016) Hypothalamus-pituitary-thyroid axis. Compr Physiol 6:1387–1428. https://doi.org/10.1002/cphy.c150027

    Article  PubMed  Google Scholar 

  39. Liu G, Liang L, Bray GA et al (2005) (2017) Thyroid hormones and changes in body weight and metabolic parameters in response to weight-loss diets: the POUNDS LOST Trial. Int J Obes 41:878–886. https://doi.org/10.1038/ijo.2017.28

    Article  CAS  Google Scholar 

  40. Moreno-Reyes R, Egrise D, Nève J et al (2001) Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Miner Res 16:1556–1563. https://doi.org/10.1359/jbmr.2001.16.8.1556

    Article  CAS  PubMed  Google Scholar 

  41. Tanguy S, Grauzam S, de Leiris J, Boucher F (2012) Impact of dietary selenium intake on cardiac health: experimental approaches and human studies. Mol Nutr Food Res 56:1106–1121. https://doi.org/10.1002/mnfr.201100766

    Article  CAS  PubMed  Google Scholar 

  42. Ringuet MT, Hunne B, Lenz M et al (2021) Analysis of bioavailability and induction of glutathione peroxidase by dietary nanoelemental, organic and inorganic selenium. Nutrients 13:1073. https://doi.org/10.3390/nu13041073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Steen A, Strøm T, Bernhoft A (2008) Organic selenium supplementation increased selenium concentrations in ewe and newborn lamb blood and in slaughter lamb meat compared to inorganic selenium supplementation. Acta Vet Scand 50:7. https://doi.org/10.1186/1751-0147-50-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cubadda F, Aureli F, Ciardullo S et al (2010) Changes in selenium speciation associated with increasing tissue concentrations of selenium in wheat grain. J Agric Food Chem 58:2295–2301. https://doi.org/10.1021/jf903004a

    Article  CAS  PubMed  Google Scholar 

  45. Leblondel G, Mauras Y, Cailleux A, Allain P (2001) Transport measurements across Caco-2 monolayers of different organic and inorganic selenium: influence of sulfur compounds. Biol Trace Elem Res 83:191–206. https://doi.org/10.1385/BTER:83:3:191

    Article  CAS  PubMed  Google Scholar 

  46. Nickel A, Kottra G, Schmidt G et al (2009) Characteristics of transport of selenoamino acids by epithelial amino acid transporters. Chem Biol Interact 177:234–241. https://doi.org/10.1016/j.cbi.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  47. Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130:1653–1656. https://doi.org/10.1093/jn/130.7.1653

    Article  CAS  PubMed  Google Scholar 

  48. Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev Nutr 35:109–134. https://doi.org/10.1146/annurev-nutr-071714-034250

    Article  CAS  PubMed  Google Scholar 

  49. Gromer S, Johansson L, Bauer H et al (2003) Active sites of thioredoxin reductases: why selenoproteins? Proc Natl Acad Sci U S A 100:12618–12623. https://doi.org/10.1073/pnas.2134510100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moser-Veillon PB, Mangels AR, Patterson KY, Veillon C (1992) Utilization of two different chemical forms of selenium during lactation using stable isotope tracers: an example of speciation in nutrition. The Analyst 117:559–562. https://doi.org/10.1039/an9921700559

    Article  CAS  PubMed  Google Scholar 

  51. Zhao Y, Yang M, Mao Z et al (2019) The clinical outcomes of selenium supplementation on critically ill patients: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 98:e15473. https://doi.org/10.1097/MD.0000000000015473

    Article  CAS  PubMed  Google Scholar 

  52. Hadrup N, Ravn-Haren G (2021) Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: a review. J Trace Elem Med Biol 67:126801. https://doi.org/10.1016/j.jtemb.2021.126801

    Article  CAS  PubMed  Google Scholar 

  53. Schomburg L, Schweizer U, Köhrle J (2004) Selenium and selenoproteins in mammals: extraordinary, essential, enigmatic. Cell Mol Life Sci CMLS 61:1988–1995. https://doi.org/10.1007/s00018-004-4114-z

    Article  CAS  PubMed  Google Scholar 

  54. Schomburg L, Schweizer U (2009) Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim Biophys Acta 1790:1453–1462. https://doi.org/10.1016/j.bbagen.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  55. Guillin OM, Vindry C, Ohlmann T, Chavatte L (2019) Selenium, selenoproteins and viral infection. Nutrients 11:E2101. https://doi.org/10.3390/nu11092101

    Article  CAS  Google Scholar 

  56. Cao JJ, Gregoire BR, Zeng H (2012) Selenium deficiency decreases antioxidative capacity and is detrimental to bone microarchitecture in mice. J Nutr 142:1526–1531. https://doi.org/10.3945/jn.111.157040

    Article  CAS  PubMed  Google Scholar 

  57. Zhao K, Huo B, Shen X (2021) Studies on antioxidant capacity in selenium-deprived the choko yak in the Shouqu Prairie. Biol Trace Elem Res 199:3297–3302. https://doi.org/10.1007/s12011-020-02461-9

    Article  CAS  PubMed  Google Scholar 

  58. Zhou N, Long H, Yu L et al (2022) Selenium-containing polysaccharide from Spirulina platensis alleviates Cd-induced toxicity in mice by inhibiting liver inflammation mediated by gut microbiota. Front Nutr 9:950062. https://doi.org/10.3389/fnut.2022.950062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Siddik MAB, Vatsos IN, Rahman MA, Pham HD (2022) Selenium-enriched spirulina (SeE-SP) enhance antioxidant response, immunity, and disease resistance in juvenile Asian seabass, Lates calcarifer. Antioxid Basel Switz 11:1572. https://doi.org/10.3390/antiox11081572

    Article  CAS  Google Scholar 

  60. Hassan F, Mobarez S, Mohamed M et al (2021) Zinc and/or selenium enriched spirulina as antioxidants in growing rabbit diets to alleviate the deleterious impacts of heat stress during summer season. Anim Open Access J MDPI 11:756. https://doi.org/10.3390/ani11030756

    Article  Google Scholar 

  61. Janssens BJ, Childress JJ, Baguet F, Rees JF (2000) Reduced enzymatic antioxidative defense in deep-sea fish. J Exp Biol 203:3717–3725. https://doi.org/10.1242/jeb.203.24.3717

    Article  CAS  PubMed  Google Scholar 

  62. Behne D, Gebner H, Wolters G, Brotherton J (1988) Selenium, rubidium and zinc in human semen and semen fractions. Int J Androl 11:415–423. https://doi.org/10.1111/j.1365-2605.1988.tb01014.x

    Article  CAS  PubMed  Google Scholar 

  63. Sunde RA, Raines AM (2011) Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv Nutr Bethesda Md 2:138–150. https://doi.org/10.3945/an.110.000240

    Article  CAS  Google Scholar 

  64. Castel T, Theron M, Pichavant-Rafini K et al (2021) Can selenium-enriched spirulina supplementation ameliorate sepsis outcomes in selenium-deficient animals? Physiol Rep 9:e14933. https://doi.org/10.14814/phy2.14933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777. https://doi.org/10.1152/physrev.00039.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gu QP, Sun Y, Ream LW, Whanger PD (2000) Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol Cell Biochem 204:49–56. https://doi.org/10.1023/a:1007065829068

    Article  CAS  PubMed  Google Scholar 

  67. Yao H, Fan R, Zhao X et al (2016) Selenoprotein W redox-regulated Ca2+ channels correlate with selenium deficiency-induced muscles Ca2+ leak. Oncotarget 7:57618–57632. https://doi.org/10.18632/oncotarget.11459

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ko KY, Lee JH, Jang JK et al (2019) S-Glutathionylation of mouse selenoprotein W prevents oxidative stress-induced cell death by blocking the formation of an intramolecular disulfide bond. Free Radic Biol Med 141:362–371. https://doi.org/10.1016/j.freeradbiomed.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  69. Shetty S, Copeland PR (2018) Molecular mechanism of selenoprotein P synthesis. Biochim Biophys Acta Gen Subj 1862:2506–2510. https://doi.org/10.1016/j.bbagen.2018.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Olson GE, Winfrey VP, Hill KE, Burk RF (2008) Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem 283:6854–6860. https://doi.org/10.1074/jbc.M709945200

    Article  CAS  PubMed  Google Scholar 

  71. Lee JH, Park KJ, Jang JK et al (2015) Selenoprotein S-dependent selenoprotein K binding to p97(VCP) protein is essential for endoplasmic reticulum-associated degradation. J Biol Chem 290:29941–29952. https://doi.org/10.1074/jbc.M115.680215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Falk M, Bernhoft A, Framstad T et al (2018) Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS 50:527–536. https://doi.org/10.1016/j.jtemb.2018.03.003

    Article  CAS  Google Scholar 

  73. Kumar S, Björnstedt M, Holmgren A (1992) Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur J Biochem 207:435–439. https://doi.org/10.1111/j.1432-1033.1992.tb17068.x

    Article  CAS  PubMed  Google Scholar 

  74. Lu J, Berndt C, Holmgren A (2009) Metabolism of selenium compounds catalyzed by the mammalian selenoprotein thioredoxin reductase. Biochim Biophys Acta 1790:1513–1519. https://doi.org/10.1016/j.bbagen.2009.04.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Nathalie GUEGUENIAT 1 and the Pôle de Spectrométrie Océan (PSO) (IUEM/Ifremer, Brest, France) for their technical assistance. The authors also thank the Britanny Council.

Availability of Data and Materials

The authors declare that data and material are available.

Code Availability

The authors declare that software application and custom code are available.

Funding

This research was supported by a grant from the Brittany Regional Council.

Author information

Authors and Affiliations

Authors

Contributions

Castel T., Théron M., Pichavant-Rafini K., and Léon K. conceived and designed the experiments and contributed to the writing and revising of the article manuscript. Gandubert C., Amérand A., Guernec A., and Gueguen B. contributed to the acquisition, the analysis of the data, and the revision of the manuscript. All authors have seen and approved the final manuscript.

Corresponding author

Correspondence to T. Castel.

Ethics declarations

Ethical Approval

Our animal studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. National specific laws have been observed, too.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castel, T., Léon, K., Gandubert, C. et al. Comparison of Sodium Selenite and Selenium-Enriched Spirulina Supplementation Effects After Selenium Deficiency on Growth, Tissue Selenium Concentrations, Antioxidant Activities, and Selenoprotein Expression in Rats. Biol Trace Elem Res 202, 685–700 (2024). https://doi.org/10.1007/s12011-023-03705-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03705-0

Keywords

Navigation