Skip to main content

Advertisement

Log in

Apoptosis may determine the release of skeletal alkaline phosphatase activity from human osteoblast-line cells

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Although quantitative measurement of skeletal alkaline phosphatase (sALP) activity in serum can provide an index of the rate of bone formation, the metabolic process that determines the release of sALP - from the surface of osteoblasts, into circulation—is unknown. The current studies were intended to examine the hypothesis that the release of sALP from human osteoblasts is a consequence of apoptotic cell death. We measured the release of sALP activity from human osteosarcoma (SaOS-2) cells and normal human bone cells, under basal conditions and in response to agents that increased apoptosis (TNF-α, okadiac acid) and agents that inhibit apoptosis (IGF-I, calpain, and caspase inhibitors). Apoptosis was determined by the presence of nucleosomes (histone-associated DNA) in the cytoplasm of the cells by using a commercial kit. The results of these studies showed that TNF-α and okadiac acid caused dose-and time-dependent increases in apoptosis in the SaOS-2 cells (r=0.78 for doses of TNF-α and r=0.93 for doses of okadiac acid,P<0.005 for each), with associated decreases in cell layer protein (P<0.05 for each) and concomitant increases in the release of sALP activity (e.g., r=0.89 for TNF-α and r=0.75 for okadiac acid,P<0.001 for each). In contrast, caspase and calpain inhibitors reduced apoptosis, increased cell layer protein, and decreased the release of sALP activity (P<0.05 for each). Exposure to IGF-I also decreased apoptosis, in a time- and dose-dependent manner (e.g., r=0.93,P<0.001 for IGF-I doses), with associated proportional effects to increase cell layer protein (P<0.001) and decrease the relase of sALP activity (P<0.001). IGF-I also inhibited the actions of TNF-α and okadiac acid to increase apoptosis and sALP release. The associations between apoptosis and sALP release were not unique to osteosarcoma (i.e., SaOS-2) cells, but also seen with osteoblast-line cells derived from normal human bone. Together, these data demonstrate that the release of sALP activity from human osteoblast-line cellsin vitro is associated with, and may be a consequence of, apoptotic cell death. These findings are consistent with the general hypothesis that the appearance of sALP activity in serum may reflect the turnover of osteoblast-line cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALP:

alkaline phosphatase

ANOVA:

analysis of variance

BSA:

bovine serum albumin

calpain inhibitor I:

(Nacetyl-leucyl-leucyl-norleucinal)

calpain inhibitor II:

Nacetyl-leucyl-leucyl-methional

caspase inhibitor:

z-valyl-alanyl-aspartyl(O-methoxy)CH2F

caspase substrate IV:

acetyl-tyrosyl-valyl-alanyl-aspartyl-p-nitroanalide -a colorimetric substrate for caspase activity

DMEM:

Dulbecco’s modified Minimum Essential Medium

DTT:

dithio-threitol

ELISA:

enzyme-linked immunosorbant assay

FCS:

fetal calf serum

IGF-I:

insulin-like growth factor I

PBS:

phosphate-buffered saline

PNPP:

p-nitrophenyl-phosphate (a colorimetric substrate for ALP activity)

SEM:

standard error of the mean

TCA:

trichloroacetic acid

TNF-α:

tumor necrosis factor-alpha

References

  1. McComb RB, Bowers GN, Jr Posen S (1979) Alkaline phosphatase. Plenum Press, New York, pp

    Book  Google Scholar 

  2. Ferguson MA, Williams AF (1988) Cell surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Ann Rev Biochem 57:285–320

    Article  CAS  PubMed  Google Scholar 

  3. Fedde KN (1992) Human osteosarcoma cells spontaneously release matrix-vesicle-like structures with the capacity to mineralize. Bone Miner 17:145–151

    Article  CAS  PubMed  Google Scholar 

  4. Anh DJ, Dimai HP, Hall SL, Farley JR (1998) Skeletal alkaline phosphatase activity is primarily released form human osteoblasts in an insoluble form and the net release is inhibited by calcium and skeletal growth factors. Calcif Tissue Int 62:332–340

    Article  CAS  PubMed  Google Scholar 

  5. Huppertz R, Frank H-G, Kaufmann P (1999) The apoptosis cascade—morphological and immunohistochemical methods for its visualization. Anat Embryol 200:1–18

    Article  CAS  PubMed  Google Scholar 

  6. Kiess W, Gallaher B (1998) Hormonal control of programmed cell death/apoptosis. Eur J Endocrinal 138:482–491

    Article  CAS  Google Scholar 

  7. Mills JC, Stone NL, Pittman RN (1999) Extranuclear apoptosis: the role of the cytoplasm in the execution phase. J Cell Biol 146:703–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Driscoll TA, Hannun YA, Obeid LM (1998) Regulation of membrane release in apoptosis. Biochem J 334:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Staunton MJ, Gaffney EF (1998) Apoptosis: basic concepts and potential significance in human cancer. Arch Pathol Lab Med 122:310–319

    CAS  PubMed  Google Scholar 

  10. Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop 314:266–280

    Google Scholar 

  11. Kuhn K, Hashimoto S, Lotz M (1999) Cell density modulates apoptosis in human articular chondrocytes. J Cell Physiol 180:439–447

    Article  CAS  PubMed  Google Scholar 

  12. Gibson G (1998) Active role of chondrocyte apoptosis in endochondral ossification. Microsc Res Tech 43:191–204

    Article  CAS  PubMed  Google Scholar 

  13. Roach HI (1997) New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix. J Bone Miner Res 12:795–805

    Article  CAS  PubMed  Google Scholar 

  14. Ruemmele FM, Dionne S, Levy E, Seidman EG (1999) TNFα-induced IEC-6 cell apoptosis requires activation of ICE caspases whereas complete inhibition of the caspase cascade leads to necrotic cell death. BBRC 260:159–166

    CAS  PubMed  Google Scholar 

  15. Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, Vayssiere J-L (1998) TNF-α activates at least two apoptotic signalling cascades. Oncogene 17:1639–1651

    Article  CAS  PubMed  Google Scholar 

  16. Morimoto Y, Ohba T, Kobayashi S, Haneji T (1997) The protein phosphatase inhibitors okadaic acid and calyculin A induce apoptosis in human osteoblastic cells. Exp Cell Res 230:181–186

    Article  CAS  PubMed  Google Scholar 

  17. Prisco M, Romano G, Peruzzi F, Valentinis B, Baserga R (1999) Insulin and IGF-I receptors signaling in protection from apoptosis. Horm Metab Res 31:80–89

    Article  CAS  PubMed  Google Scholar 

  18. Butt AJ, Firth SM, Baxter RC (1999) The IGF axis and programmed cell death. Immunol Cell Biol 77:256–262

    Article  CAS  PubMed  Google Scholar 

  19. Herrler A, Krusche CA, Beier HM (1998) Insulin and insulin-like growth factor-I promote rabbit blastocyst development and prevent apoptosis. Biol Reprod 59:1302–1310

    Article  CAS  PubMed  Google Scholar 

  20. Segundo C, Medina F, Rodriguiz C, Martinez-Palencia R, Leyva-Cobian F, Brieva JA (1999) Surface molecule loss and bleb formation by human germinal center B cells undergoing apoptosis: role of apoptotic blebs in monocyte chemotaxis. Blood 94:1012–1020

    CAS  PubMed  Google Scholar 

  21. Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140:627–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613

    Article  CAS  PubMed  Google Scholar 

  23. Gervais FG, Thornberry NA, Ruffolo SC, Nicholson DW, Roy S (1998) Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide. J Biol Chem 273:17102–17108

    Article  CAS  PubMed  Google Scholar 

  24. Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z, Shull S, Mann K, Rodan GA (1987) Characterization of a human osteosarcoma cell line (SaOS-2) with osteoblastic properties. Cancer Res 47:4961–4966

    CAS  PubMed  Google Scholar 

  25. Murray E, Provvendini D, Curran D, Catherwood B, Sussman H, Manolagas S (1987) Characterization of a human osteoblastic osteosarcoma cell line (SaOS-2) with high bone alkaline phosphatase activity. J Bone Miner Res 2:231–238

    Article  CAS  PubMed  Google Scholar 

  26. Farley JR, Hall SL, Herring S, Tarbaux NM, Matsuyama T, Wergedal J (1991) Skeletal alkaline phosphatase specific activity is an index of the osteoblastic phenotype in subpopulations of the human osteosarcoma cell line SaOS-2. Metabolism 40:664–671

    Article  CAS  PubMed  Google Scholar 

  27. Farley JR, Kyeyune-Nyombi E, Tarbaux NM, Hall SL, Strong DD (1989) Alkaline phosphatase activity from human osteosarcoma cell line SaOS-2: an isoenzyme standard for quantifying skeletal alkaline phosphatase activity in serum. Clin Chem 35:223–229

    CAS  PubMed  Google Scholar 

  28. Wergedal JE, Matsuyama T, Strong DD (1992) Differentiation of normal human bone cells by transforming growth factor-beta and 1,25(OH)2-vitamin D3. Metabolism 41:42–48

    Article  CAS  PubMed  Google Scholar 

  29. Farley JR, Tarbaux NM, Hall S, Baylink DJ (1988) Evidence that fluoride-stimulated3[H]-thymidine incorporation in embryonic chick calvarial cell cultures is dependent on the presence of a bone cell mitogen, sensitive to changes in the phosphate concentration, and modulated by systemic skeletal effectors. Metabolism 37:988–995

    Article  CAS  PubMed  Google Scholar 

  30. Farley J, Tarbaux NM, Vermeiden J, Baylink D (1988) In vitro evidence that local and systemic skeletal effectors can regulate3[H]-thymidine incorporation in chick calvarial cell cultures and modulate the stimulatory action(s) of embryonic chick bone extract. Calcif Tissue Int 42:23–33

    Article  CAS  PubMed  Google Scholar 

  31. Farley J, Masuda T, Wergedal JE, Baylink DJ (1982) Human skeletal growth factor: characterization of the mitogenic effect on bone cells in vitro. Biochemistry 21:3508–3513

    Article  CAS  PubMed  Google Scholar 

  32. Farley JR, Tarbaux NM, Murphy LA, Masuda T, Baylink DJ (1987) In vitro evidence that bone formation may be coupled to resorption by release of mitogen(s) from resorbing bone. Metabolism 36:314–321

    Article  CAS  PubMed  Google Scholar 

  33. Farley JR, Tarbaux NM, Hall SL, Linkhart TA, Baylink DJ (1988) The anti-bone-resorptive agent calcitonin also acts in vitro to directly increase bone formation and bone cell proliferation. Endocrinology 123:159–167

    Article  CAS  PubMed  Google Scholar 

  34. Farley JR, Wergedal JE, Hall SL, Herring S, Tarbaux NM (1991) Calcitonin has direct effects on3[H]-thymidine incorporation and alkaline phosphatase activity in human osteoblast-line cells. Calcif Tissue Int 48:297–301

    Article  CAS  PubMed  Google Scholar 

  35. Farley JR (1995) Phosphate regulates the stability of skeletal alkaline phosphatase activity in human osteosarcoma (SaOS-2) cells without equivalent effects on the level of skeletal alkaline phosphatase immunoreactive protein. Calcif Tissue Int 57:371–378

    Article  CAS  PubMed  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram amounts of protein using the principle of protein-dye binding. Anal Biochem 72:248–255

    Article  CAS  PubMed  Google Scholar 

  37. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607

    CAS  PubMed  Google Scholar 

  38. Farley J, Dimai HP, Stilt-Coffing B, Farley P, Pham T, Mohan S (2000) Calcitonin increases the concentration of insulin-like growth factors in serum-free cultures of human osteoblast-line cells. Calcif Tissue Int (in press):

  39. Rosen CJ, Donahue LR, Hunter SJ (1994) Insulin-like growth factors and bone: the osteoporosis connection. Proc Soc Exp Biol Med 206:83–102

    Article  CAS  PubMed  Google Scholar 

  40. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC (1998) Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 13:793–802

    Article  CAS  PubMed  Google Scholar 

  41. Weinstein RS, Manolagas SC (2000) Apoptosis and osteoporosis. Physio Med 108:153–164

    CAS  Google Scholar 

  42. Plotkin LI, Weinstein R, Parfitt AM, Roberson PK, Manolagas SC, Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104:1363–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jilka R, Weinstein R, Bellido T, Roberson P, Parfitt A, Manolagas S (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. J Clin Invest 102:274–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gohel A, McCarthy M-B, Gronowicz G (1999) Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vito and in vitro. Endocrinology 140:5539–5547

    Google Scholar 

  46. Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15:60–67

    Article  CAS  PubMed  Google Scholar 

  47. Fallon MD, Whyte MP, Teitelbaum SL (1980) Stereospecific inhibition of alkaline phosphatase by L-tetramisole prevents in vitro cartilage calcification. Lab Invest 43:489–494

    CAS  PubMed  Google Scholar 

  48. Yoon K, Golub E, Rodan GA (1989) Alkaline phosphatase cDNA transfected cells promote calcium and phosphorous deposition. Connect Tissue Res 22:17–25

    Article  CAS  PubMed  Google Scholar 

  49. Weiss MV, Cole DEC, Ray K, Whyte MP, Lafferty MA, Mulivor RA, Harris H (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci USA 85:7666–7669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, S Narisawa, Millan JL, MacGregor GR, Whyte MP (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14:2015–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Narisawa S, Frohlander N, Millan JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446

    Article  CAS  PubMed  Google Scholar 

  52. Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B6. Nat Genet 11:45–51

    Article  CAS  PubMed  Google Scholar 

  53. Lauffenburger T, Olah AJ, Dambacher J, Guncaga J, Lentner C, Haas H (1977) Bone remodeling and calcium metabolism: a correlated histomorphometric, calcium kinetic, and biochemical study in patients with osteoporosis and Paget’s disease. Metabolism 26:589–597

    Article  CAS  PubMed  Google Scholar 

  54. Van Straalen JP, Sanders E, Prummel MF, Sanders GTB (1991) Bone-alkaline phosphatase as indicator of bone formation. Clin Chim Acta 201:27–34

    Article  PubMed  Google Scholar 

  55. Huang K-S, Li S, Low MG (1991) Glycosylphosphatidylinositol-specific phospholipase D. Methods Enzymol 197:567–575

    Article  CAS  PubMed  Google Scholar 

  56. Scallon BJ, Fung W-J C, Tsang TC, Li S, Kado-Fong H, Huang K-S, Kochan JP (1991) Primary structure and functional activity of a phosphatidylinositol-glycan-specific phospholipase D. Science 252:446–448

    Article  CAS  PubMed  Google Scholar 

  57. Stinson RA, Hamilton BA (1994) Human liver plasma membranes contain an enzyme activity that removes membrane anchor from alkaline phosphatase and converts it to a plasmalike form. Clin Biochem 27:49–55

    Article  CAS  PubMed  Google Scholar 

  58. Hamilton BA, McPhee JL, Hawrylak K, Stinson RA (1989) Alkaline phosphatase releasing activity in human tissues. Clin Chim Acta 186:249–254

    Article  Google Scholar 

  59. Davitz MA, Hom J, Schenkman S (1989) Purification of a glycosyl-phosphatidylinositol-specific phospholipase D from human plasma. J Biol Chem 264:13760–13764

    CAS  PubMed  Google Scholar 

  60. Low MG, Huang K-S (1991) Factors affecting the ability of glycosylphosphatidylinositol-specific phospholipase D to degrade the membrane anchors of cell surface proteins. Biochem J 279:483–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Solter PF, Hoffmann WE (1999) Solubilization of liver alkaline phosphatase isoenzyme during cholestasis in dogs. Am J Vet Res 60:1010–1015

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farley, J.R., Stilt-Coffing, B. Apoptosis may determine the release of skeletal alkaline phosphatase activity from human osteoblast-line cells. Calcif Tissue Int 68, 43–52 (2001). https://doi.org/10.1007/BF02685002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685002

Key words

Navigation