Skip to main content
Log in

Whitaker lecture 1996: Microcirculation, biomedical engineering, and artificial blood

  • Whitaker Lecture
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The development of artificial blood requires the understanding of how blood behaves, at the level of the microcirculation. A number of measuring systems have recently become available that allow analysis of the transport properties of blood and the microvessels in terms of pressure, flow, the dynamics of their diameter changes, and the rate and manner of oxygen delivery. Findings from this technology have led to the development of an analytical framework with which to assess the consequences of altering the physical properties of blood and to verify quantitatively theoretical predictions. Results show that blood viscosity and oxygen-carrying capacity are directly related, and must be jointly modified in a prescribed manner to maintain tissue oxygen delivery. The use of optical techniques to asses flow and oxygen delivery in experimental animal models show that the consumption of oxygen by the microvessel wall is an important determinant of tissue oxygenation. Furthermore, the viscosity of blood and/or the mixture of blood and an artificial substitute must achieve a viscosity that is close to normal. Low blood viscosity is not necessarily beneficial, unless blood flow velocity rises to maintain the shear stress at the wall needed for the generation of local vasodilators. Manipulating physical properties of currently available modified hemoglobins by mixing them with conventional plasma expanders yield fluids that may provide optimal blood replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baez, S. Recording microvascular dimensions with, an image splitter microscope.J. Appl. Physiol. 211:299–305, 1966.

    Google Scholar 

  2. Colantuoni, A., S. Bertuglia, and M. Intaglietta. Quantitation of rhythmic diameter changes in arterial microcirculation.Am. J. Physiol. 246 (Heart. Circ. Physiol. 15):H508-H517, 1984.

    PubMed  CAS  Google Scholar 

  3. Colantuoni, A., S. Bertuglia, and M. Intaglietta. Effects of anesthesia on the spontaneous activity, of the microvasculature.Int. J. Microcirc. Clin. Exp. 3:13–28, 1984.

    PubMed  CAS  Google Scholar 

  4. Detar, R., and D. F. Bohr. Oxygen and vascular smooth muscle contraction.Am. J. Physiol. 214:241–244, 1968.

    PubMed  CAS  Google Scholar 

  5. Dyson, J. Precise, measurement, by image splitting.J. Opt. Soc. Am. 50:754–757, 1960.

    Article  Google Scholar 

  6. Endrich, B., N. M. Newman, A. G. Greenberg, and M. Intaglietta. Fluorocarbon emulsions as a synthetic blood substitute: effects on the microvascular hemodynamics in the rabbit omentum.J. Surg. Res. 29:516–526, 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Fagrell, B., A. Fronek, and M. Intaglietta. A microscope-television system for studying flow velocity in human skin capillaries.Am. J. Physiol. 233 (Heart. Circ. Physiol. 2):H318-H321, 1977.

    PubMed  CAS  Google Scholar 

  8. Frangos, J. A., S. G. Eskin, L. V. McIntire, and C. L. Ives. Flow effects on prostacyclin production in, cultures human endothelial cells.Science 227:1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Grabowski, E. F., E. A. Jaffe, and B. B. Weksler. Prostacyclin production by cultured endothelial cells monolayers exposed to step increases in shear stress.J. Lab. Clin. Med. 103:1774–1777, 1985.

    Google Scholar 

  10. Greenburg, A. G. An overview of chemical modification of stroma free hemoglobin.Biomater. Artif. Cells Artif. Org. 16:71–75, 1988.

    CAS  Google Scholar 

  11. Intaglietta, M. Graphic display of television raster lines.Rev. Sci. Instr. 41:1105–1106, 1970.

    Article  Google Scholar 

  12. Intaglietta, M. Microvascular pressure measurements by cannulation: independency of concentration gradients and deviations in, micro-servo-nulling.Microvasc. Res. 3:396–399, 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Intaglietta, M. Pressure measurements in the mammalian microvasculature by active and passive systems.Microvasc. Res. 5:317–323, 1973.

    Article  PubMed  CAS  Google Scholar 

  14. Intaglietta, M. Blood pressure and flow measurement. In: Handbook of bioengineering, chap. 33, edited by R. Skalak and S. Chien, New York: McGraw-Hill Book Co., 1987, pp. 1–15.

    Google Scholar 

  15. Intaglietta, M. Microcirculatory effects of hemodilution: background and analysis. In: The role of hemodilution in optimal patient care, edited by R. F. Tuma, J. V. White, and K. Messmer. Munich: W. Zuckschwerdt Verlag, 1989, pp. 21–41.

    Google Scholar 

  16. Intaglietta, M., and W. R. Tompkins. Micropressure measurement with 1 micron and smaller cannulae.Microvasc. Res. 3:211–214, 1971.

    Article  PubMed  CAS  Google Scholar 

  17. Intaglietta, M., and W. R. Tompkins. System for the measurement of velocity of microscopic particles in liquids.IEEE Trans. Biomed. 18:376–377, 1971.

    CAS  Google Scholar 

  18. Intaglietta, M., and W. R. Tompkins. On-line measurement of microvascular dimensions by television microscopy and elastic properties.J. Appl. Physiol. 32:546–551, 1972.

    PubMed  CAS  Google Scholar 

  19. Intaglietta, M., and W. R. Tompkins. On-line microvascular blood cell flow velocity measurement by simplified correlation technique.Microvasc. Res. 4:217–220, 1972.

    Article  Google Scholar 

  20. Intaglietta, M., and W. R. Tompkins. Microvascular measurements by video image shearing and splitting.Microvasc. Res. 5:309–313, 1973.

    Article  PubMed  CAS  Google Scholar 

  21. Intaglietta, M., and W. R. Tompkins. Capillary video red blood cell velocimetry by cross correlation and spatial filtering.Microvasc. Res. 34:108–115, 1987.

    Article  PubMed  CAS  Google Scholar 

  22. Intaglietta, M., and W. R. Tompkins. Simplified micropressure measurements via bridge current feedback.Microvasc. Res. 39:386–389, 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Intaglietta, M., and R. M. Winslow. Artificial blood. In: The biomedical engineering handbook, edited by J. D. Bronzino. Boca Raton, FL: CRC Press, 1995, pp. 2011–2022.

    Google Scholar 

  24. Intaglietta, M., and B. W. Zweifach. Indirect method for measurement of pressure in blood capillaries.Circ. Res. 19: 199–205, 1966.

    Google Scholar 

  25. Intaglietta, M., W. R. Tompkins, and D. R. Richardson. Velocity measurements in the microvasculature of the cat omentum by on-line method.Microvasc. Res. 2:462–473, 1970.

    Article  PubMed  CAS  Google Scholar 

  26. Intaglietta, M., R. F. Pawula, and W. R. Tompkins. Pressure measurements in the mammalian microvasculature.Microvasc. Res. 2:212–220, 1970.

    Article  PubMed  CAS  Google Scholar 

  27. Intaglietta, M., D. R. Richardson, and W. R. Tompkins. Blood pressure, flow, and elastic properties of microvessels of cat omentum.Am. J. Physiol. 221:922–928, 1971.

    PubMed  CAS  Google Scholar 

  28. Intaglietta, M., N. R. Silverman, and W. R. Tompkins. Capillary flow velocity measurementsin vivo andion situ by television methods.Microvasc. Res. 10:165–179, 1975.

    Article  PubMed  CAS  Google Scholar 

  29. Intaglietta, M., S. Mirhashemi, and W. R. Tompkins. Capillary fluxmeter: the simultaneous measurement of hematocrit, velocity and flux.Int. J. Microcirc. Clin. Exp. 8:313–320, 1989.

    PubMed  CAS  Google Scholar 

  30. Intaglietta, M., G. Breit, and W. R. Tompkins. Four window differential capillary velocimeter.Microvasc. Res. 40:46–54, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Intaglietta, M., P. C. Johnson, and R. M. Winslow. Microvascular and tissue oxygen distribution.Cardiovasc. Res. 32:632–643, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Johnson, P. C., and M. Intaglietta. Contributions of pressure and flow sensitivity to autoregulation in mesenteric arterioles.Am. J. Physiol. 231 (Heart. Circ. Physiol. 6):1686–1698, 1976.

    PubMed  CAS  Google Scholar 

  33. Kaufman, A. G., and M. Intaglietta. Automated diameter measurement of vasomotion by cross-correlation.Int. J. Microcirc. Clin. Exp. 4:45–53, 1985.

    PubMed  CAS  Google Scholar 

  34. Kerger, H., I. P. Torres Filho, M. Rivas, R. M. Winslow, and M. Intaglietta. Systemic and subcutaneous microvascular oxygen tension in conscious Syrian golden hamsters.Am. J. Physiol. 268 (Heart. Circ. Physiol. 37):H802–810, 1995.

    PubMed  CAS  Google Scholar 

  35. Landis, E. M. The capillary pressure in frog mesentery as determined, by microinjection methods.Am. J. Physiol. 75: 548–570, 1926.

    Google Scholar 

  36. Lipowsky, H. H., and B. W. Zweifach. Methods for the simultaneous measurement of pressure differentials and flow in single unbranched vessels of the microcirculation for rheological studies.Microvasc. Res. 14:345–361, 1977.

    Article  PubMed  CAS  Google Scholar 

  37. Mazzoni, M. C., P. Borgström, K.-E. Arfors, and M. Intaglietta. Dynamic fluid redistribution in, hyperosmotic resuscitation of hypovolemic hemorrhage.Am. J. Physiol. 255 (Heart. Circ. Physiol. 24):H629-H637, 1988.

    PubMed  CAS  Google Scholar 

  38. Meyer, J.-U., and M. Intaglietta. measurement, of the dynamics of arteriolar diameter.Ann. Biomed. Eng. 14:109–117, 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Miller, V., and J. C. Burnett, Jr. Modulation of NO and endothelin by chronic increases in, blood flow in canine femoral arteries.Am. J. Physiol. 260 (Heart Circ. Physiol. 32):H103-H108, 1992.

    Google Scholar 

  40. Mirhashemi, S., K. Messmer, and M. Intaglietta. Tissue perfusion during normovolemic hemodilution investigated by a hydraulic model of the cardiovascular system.Int. J. Microcirc. Clin. Exp. 6:123–136, 1987.

    PubMed  CAS  Google Scholar 

  41. Mirhashemi, S., S. Ertefai, K. Messmer, and M. Intaglietta. Model analysis of the enhancement of tissue oxygenation by hemodilution due to increased microvascular flow velocity.Microvasc. Res. 34:290–301, 1987.

    Article  PubMed  CAS  Google Scholar 

  42. Mirhashemi, S., K. Messmer, K.-E. Arfors, and M. Intaglietta. Microcirculatory effects of normovolemic hemodilution in skeletal muscle.Int. J. Microcirc. Clin. Exp. 6:359–370, 1987.

    PubMed  CAS  Google Scholar 

  43. Mirhashemi, S., G. A. Breit, R. H. Chávez, and M. Intaglietta. Effects of hemodilution on skin microcirculation.Am. J. Physiol. 254(Heart. Circ. Physiol. 23):H411-H416, 1988.

    PubMed  CAS  Google Scholar 

  44. Papenfuss, H. D., J. F. Gross, M. Intaglietta, and F. A. Treese. A transparent access chamber for the rat dorsal skin fold.Microvasc. Res. 18:311–318, 1979.

    Article  PubMed  CAS  Google Scholar 

  45. Rubio, R., and G. Zubieta. The variation of electricla resistance of microelectrodes during the flow of current.Acta Physiol. Latin Am. 11:211–214, 1961.

    Google Scholar 

  46. Rumsey, W. L., J. M. Vanderkooi, and D. F. Wilson. Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue.Science 241:1649–1651, 1988.

    Article  PubMed  CAS  Google Scholar 

  47. Silva, J. and M. Intaglietta. Measurement of pulsatile blood vlow velocity ion microvessels from single photometric detector.IEEE Trans. Biomed. 20:310–312, 1973.

    Article  CAS  Google Scholar 

  48. Tompkins, W. R., R. Monti, and M. Intaglietta Velocity measurement by self-tracking correlator.Rev. Sci. Instr. 45: 647–649, 1974.

    Article  Google Scholar 

  49. Torres Filho, I. P., and M. Intaglietta. Microvessel pO2 measurements by phosphorescence decay method.Am. J. Physiol. 265(Heart. Circ. Physiol. 34):H1434-H1438, 1993.

    PubMed  CAS  Google Scholar 

  50. Torres Filho, I. P., Y. Fan, M. Intaglietta, and R. K. Jain. Non-invasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice.Proc. Natl. Acad. Sci. U.S.A. 91:2081–2085, 1994.

    Article  PubMed  CAS  Google Scholar 

  51. Torres Filho, I. P., H. Kerger, and M. Intaglietta. pO2 measurements in arteriolar networks.Microvasc. Res. 51:202–212, 1996.

    Article  PubMed  CAS  Google Scholar 

  52. Tsai, A. G., and M. Intaglietta. Local tissue oxygenation during constant red blood cell flux: a discrete source analysis of velocity and hematocrit changes.Microvasc. Res. 37:308–322, 1989.

    Article  PubMed  CAS  Google Scholar 

  53. Tsai, A. G., K.-E. Arfors, and M. Intaglietta. Analysis of oxygen transport to tissue during extreme, hemodilution.Adv. Exp. Med. Biol. 277:881–887, 1990.

    PubMed  CAS  Google Scholar 

  54. Tsai, A. G., K.-E. Arfors, and M. Intaglietta. Spatial distribution of red blood cells in individual skeletal muscle capillaries during extreme hemodilution.Int. J. Microcirc. Clin. Exp. 10:317–334, 1991.

    PubMed  CAS  Google Scholar 

  55. Tsai, A. G., H. Kerger, and M. Intaglietta. Microcirculatory consequences of blood substitution with αα-hemoglobin. In: Blood substitutes. Physiological basis of efficacy, edited by R. M. Winslow, K. D. Vandegriff, and M. Intaglietta. Boston: Birkhäuser, 1995, pp. 155–174.

    Google Scholar 

  56. Tsai, A. G., H. Kerger, and M. Intaglietta. Microvascular oxygen distribution: effects due to free hemoglobin in plasma. In: Blood substitutes. New challenges, edited by R. M. Winslow, K. D. Vandegriff, and M. Intaglietta. Boston: Birkhäuser, 1996, pp. 124–131.

    Google Scholar 

  57. Tsai, A. G., B. Friesenecker, and M. Intaglietta. Capillary flow impairment and functional capillary density.Int. J. Microcirc. Clin. Exp. 15(Suppl. 5):238–243, 1995.

    PubMed  CAS  Google Scholar 

  58. Vanderkooi, J. M., G. Maniara, T. J. Green, and D. F. Wilson. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence.J. Biol. Chem. 262:5476–5482, 1987.

    PubMed  CAS  Google Scholar 

  59. Wayland, H., and P. C. Johnson. Erythrocyte velocity measurement in microvessels by a two slit method.J. Appl. Physiol. 22:333–337, 1967.

    PubMed  CAS  Google Scholar 

  60. Wiederhielm, C. A., J. W. Woodbury, S. Kirk, and R. F. Rushmer. Pulsatile pressure in the microcirculation of the frog’s mesentery.Am. J. Physiol. 207:173–176, 1964.

    PubMed  CAS  Google Scholar 

  61. Winslow, R. M. Blood substitutes: a moving target.Nature Med. 1:1212–1215, 1995.

    Article  PubMed  CAS  Google Scholar 

  62. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tombe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells.Nature 332:411–415, 1988.

    Article  PubMed  CAS  Google Scholar 

  63. Yin, F. C. P., W. R. Tompkins, K. L. Peterson, and M. Intaglietta. A video dimension analyzer.IEEE Trans. Biomed. 19:376–381, 1972.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Intaglietta, M. Whitaker lecture 1996: Microcirculation, biomedical engineering, and artificial blood. Ann Biomed Eng 25, 593–603 (1997). https://doi.org/10.1007/BF02684838

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684838

Keywords

Navigation