Skip to main content
Log in

Effects of rotational myocardial anisotropy in forward potential computations with equivalent heart dipoles

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Rotating fibers in the heart lead to a myocardium of inhomogeneous anisotropic conductivity. Besides affecting the activation isochrones, this anisotropy modifies the equivalent dipoles used in calculating extracardiac potentials, rendering them oblique rather than normal to the activation wavefront due to an added axial dipole component oriented along the fibers. Herein, however, consequences of the assumption usually made in forward potential calculations that the equivalent dipoles act in a myocardium that is homogeneous and isotropic are examined. A layered inner block representing the heart was placed inside an outer block representing an isotropic volume conductor. Fiber direction in the inner block rotated uniformly from layer to layer. Current dipoles of different orientations were placed in the inner block and the potentials calculated everywhere. Effects of the anisotropy of the inner block were gauged by computing an equivalent dipole that best fit the outer block surface potentials. For volume conductor conductivities close to that of the torso, the anisotropy diminished dipoles oriented along the fibers. Since the intraventricular blood masses in the heart also diminish such dipoles, these reductions of the axial component may explain the success of heart model simulations that ignore this component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki, M., Y. Okamoto, T. Musha, and K.-I. Harumi. Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials: normal heart and bundle branch block.IEEE Trans. Biomed. Eng. 34:454–462, 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Brody, D. A. A theoretical analysis of intracavitary blood mass influence on the heart-lead relationship.Circ. Res. 4:731–738, 1956.

    PubMed  CAS  Google Scholar 

  3. Colli-Franzone, P., L. Guerri, and B. Taccardi. Potential distributions generated by points stimulation in a myocardial volume: simulation studies in a model of anisotropic ventricular muscle.J. Cardiovasc. Electrophysiol. 4:438–458, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Colli-Franzone, P., L. Guerri, and S. Tentoni. Mathematical modeling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field.Math. Biosci. 101:155–235, 1990.

    Article  Google Scholar 

  5. Colli-Franzone, P., L. Guerri, and C. Viganotti. Oblique dipole layer potentials applied to electrocardiology.J. Math. Biol. 17:93–124, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Colli-Franzone, P., L. Guerri, C. Viganotti, E. Macchi, S. Baruffi, S. Spaggiari, and B. Taccardi. Potential fields generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor.Circ. Res. 51:330–346, 1982.

    PubMed  CAS  Google Scholar 

  7. Corbin, L. V. II, and A. M. Scher. The canine heart as an electrocardiographic generator: dependence on cardiac cell orientation.Circ. Res. 41:58–67, 1977.

    PubMed  Google Scholar 

  8. Dubé, B., R. M. Gulrajani, M. Lorange, A. R. LeBlanc, J. Nasmith, and R. A. Nadeau. A computer heart model incorporating anisotropic propagations. IV. Simulation of regional myocardial ischemia.J. Electrocardiol. 29:91–103, 1996.

    Article  PubMed  Google Scholar 

  9. Ferguson, A. S., and G. Stroink. The potential generated by current sources located in an insulated rectangular volume conductor.J. Appl. Physics 76:7671–7676, 1994.

    Article  CAS  Google Scholar 

  10. Geselowitz, D., and W. T. Miller III. A bidomain model for anisotropic cardiac muscle.Ann. Biomed. Eng. 11:191–206, 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Gulrajani, R. M. Models of the electrical activity of the heart and computer simulation of the electrocardiogram.CRC Crit. Rev. Biomed. Eng. 16:1–66, 1988.

    CAS  Google Scholar 

  12. Henriquez, C. S. Simulating the electrical behavior of cardiac tissue using the biodomain model.Crit. Rev. Biomed. Eng. 21:1–77, 1993.

    PubMed  CAS  Google Scholar 

  13. IMSL, Inc. IMSL User's Manual. Houston, TX: IMSL, Inc., 1989, pp. 882–887.

    Google Scholar 

  14. Keener, J. P., and A. V. Panfilov. Three-dimensional propagation in the heart: the effects of geometry and fiber orientation on propagation in myocardium. In: Cardiac electrophysiology. From cell to bedside (2nd ed.), edited by D. P. Zipes and J. Jalife. Philadelphia: W. B. Saunders, 1995, pp. 335–347.

    Google Scholar 

  15. Krassowska, W., and J. C. Neu. Effective boundary conditions for syncytial tissues.IEEE Trans. Biomed. Eng. 41:143–150, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Leon, L. J., and B. M. Horacek. Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements.J. Electrocardiol. 24:1–15, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Leon, L. J., and B. M. Horacek. Computer model of excitation and recovery in the anisotropic myocardium. II. Excitation in the simplified left ventricle.J. Electrocardiol 24:17–31, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Leon, L. J., and B. M. Horacek. Computer model of excitation and recovery in the anisotropic myocardium. III. Arrhythmogenic conditions in the simplified left ventricle.J. Electrocardiol. 24:33–41, 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Lorange, M., and R. M. Gulrajani. Computer simulation of the Wolff-Parkinson-White preexcitation syndrome with a modified Miller-Geselowitz heart model.IEEE Trans. Biomed. Eng. 33:862–873, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Lorange, M., and R. M. Gulrajani. A computer heart model incorporating anisotropic propagation. I. Model construction and simulation of normal activation.J. Electrocardiol. 26:245–261, 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Lorange, M., R. M. Gulrajani, R. A. Nadeau, and I. Préda. A computer heart model incorporating anisotropic propagation. II. Simulations of conduction block.J. Electrocardiol. 26:263–277, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Macchi, E., G. Di Cola, L. Guerri, M. Manghi, M. Pennacchio, and B. Taccardi. Influence of cardiac muscle anisotropy on extracellular potentials generated by dipolar sources: a simulation study. In: Proceedings of the 14th Annual International Conference on IEEE Engineering in Medicine and Biology Society, edited by J. P. Morucci, R. Plonsey, J.L. Coatrieux, and S. Laxminarayan. New York: IEEE Press, 1992, pp. 608–609.

    Chapter  Google Scholar 

  23. McFee, R., and F. D. Johnston. Electrocardiographic leads. I. Introduction.Circulation 8:554–568, 1953.

    PubMed  CAS  Google Scholar 

  24. Messenger-Rapport, B., and Y. Rudy. Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry.Circ. Res. 66:1023–1039, 1990.

    Google Scholar 

  25. Miller, W. T. III, and D. B. Geselowitz. Simulation studies of the electrocardiogram. I. The normal heart.Circ. Res. 43:301–315, 1978.

    PubMed  CAS  Google Scholar 

  26. Miller, W. T. III, and D. B. Geselowitz. Simulation studies of the electrocardiogram. II. Ischemia and infarction.Circ. Res. 43:315–323, 1978.

    PubMed  Google Scholar 

  27. Pollard, A. E., N. Hooke, and C. S. Henriquez. Cardiac propagation simulation. In. High-performance computing in biomedical research, edited by T. C. Pilkington, B. Loftis, J. F. Thompson, S. L.-Y. Woo, T. C. Palmer, and T. F. Budinger. Boca Raton, FL CRC Press, 1993, pp. 319–358.

    Google Scholar 

  28. Roth, B. J. Actions potential propagation in a thick strand of cardiac muscle.Circ. Res. 68:162–173, 1991.

    PubMed  CAS  Google Scholar 

  29. Selvester, R. H., J. Solomon, and D. Sapoznikov, Computer simulation of the electrocardiogram. In: Computer techniques in cardiology, edited by L. D. Cady, New York: Marcel Dekker, 1979, pp. 417–453.

    Google Scholar 

  30. Selvester, R. H., M. E. Sanmarco, J. C. Solomon, and G. S. Wagner. The ECG: QRS change. In: Myocardial infarction; measurement and intervention, edited by G. S. Wagner. The Hague: Martinus Nijhoff, 1982, pp. 23–50.

    Google Scholar 

  31. Thivierge, M. Étude par simulation de l'effet de l'anisotropie du myocarde sur le problème direct de l'électro-cardiographie. Mémoire de maitrise, Université de Montréal, Montréal, Canada, 1996.

    Google Scholar 

  32. Tung, L. A bi-domain model for describing ischemic myocardial d-c potentials. Cambridge, MA: Massachusetts Institute of Technology, Ph.D. thesis, 1978.

    Google Scholar 

  33. Wei, D., G. Yamada, T. Musha, H. Tsunakawa, T. Tsutsumi, and K.-I. Harumi. Computer simulation of supra-ventricular tachycardia with the Wolff-Parkinson-White syndrome using three-dimensional heart models.J. Electrocardiol. 23:261–273, 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Wei, D., O. Okazaki, K. Harumi, E. Harasawa, and H. Hosaka. Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models.IEEE Trans. Biomed. Eng. 42:343–357, 1995.

    Article  PubMed  CAS  Google Scholar 

  35. Xu, Z., R. M. Gulrajani, F. Molin, M. Lorange, B. Dubé, P. Savard, and R. A. Nadeau. A computer heart model incorporating anisotropic propagation. III. Simulation of ectopic beats.J. Electrocardiol. 29:73–90, 1996.

    Article  PubMed  CAS  Google Scholar 

  36. Yan, Y., P. L. Nunez, and R. T. Hart. Finite-element model of the human head: scalp potentials due to dipole sources.Med. Biol. Eng. Comput. 29:475–481, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thivierge, M., Gulrajani, R.M. & Savard, P. Effects of rotational myocardial anisotropy in forward potential computations with equivalent heart dipoles. Ann Biomed Eng 25, 477–498 (1997). https://doi.org/10.1007/BF02684189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684189

Keywords

Navigation