Skip to main content
Log in

Generalized models of the thermomechanical behavior of viscoelastic materials with allowance for the interaction of mechanical and thermal fields (review)

  • Published:
International Applied Mechanics Aims and scope

Abstract

This article generalizes the results of a study of the structure of the constitutive equations of viscoelastic materials. The thermodynamics of irreversible processes is used to derive the constitutive equations. The concepts of generalized dissipative potential and rheologically simple behavior are used within this framework. Several new general models have already been constructed, and their relationship to well-known theories is established in the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Batai, D. G. B. Edelen, and J. Kestin, “Structure of thermodynamic flows: direct application of a dissipative inequality,” in:Thermodynamics and Kinetics of Biological Processes [Russian translation], Nauka, Moscow (1980), pp. 187–197.

    Google Scholar 

  2. V. L. Berdichevskii,Variational Principles in Continuum Mechanics [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  3. B. L. Bukhin,Introduction to the Mechanics of Pneumatic Tires [in Russian], Khimiya, Moscow (1988).

    Google Scholar 

  4. S. S. Volkov, Yu. N. Orlov, and B. Ya. Chernyak,Ultrasonic Welding of Plastics [in Russian], Khimiya, Moscow (1974).

    Google Scholar 

  5. S. Groot and P. Mazur,Nonequilibrium Thermodynamics [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  6. I. Djarmati,Nonequilibrium Thermodynamics. Field Theory and Variational Principles [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  7. A. A. Il'yushin,Plasticity. Principles of a Mathematical Theory [in Russian], Izd. AN SSSR, Moscow (1963).

    Google Scholar 

  8. A. A. Il'yushin and B. E. Pobedrya,Principles of a Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  9. V. G. Karnaukhov, “Nonlinear theory of thermoviscoelasticity for a generalized thermorheologically simple material,”Prikl. Mekh.,14, No. 1, 16–29 (1978).

    MathSciNet  Google Scholar 

  10. V. G. Karnaukhov, “Thermomechanical theory of viscoelasticity for a generalized thermorheologically simple material,”Prikl. Mekh.,14, No. 2, 24–35 (1978).

    MathSciNet  Google Scholar 

  11. V. G. Karnaukhov, “Thermomechanical theory of viscoelasticity for a generalized thermorheologically simple material,” in:Symposium: Thermal Stresses in Structural Elements, Nauk. Dumka, Kiev (1978), Vol. 18, pp. 3–10.

    Google Scholar 

  12. V. G. Karnaukhov,Coupled Problems of Thermoviscoelasticity [in Russian], Nauk. Dumka, Kiev (1982).

    Google Scholar 

  13. V. G. Karnaukhov, “Phenomenological models of generalized thermorheologically simple inelastic ferroelectric materials,”Mat. Metodv i Fiz.-Mekh. Polya, No. 3, 3–13 (1998).

    Google Scholar 

  14. V. G. Karnaukhov, “Phenomenological models of inelastic ferromagnetic materials in the space of internal time,”Prikl. Mekh.,34, No. 10, 67–72 (1988) (Int. Appl. Mech.,34, No. 10, 981–986 (1998)).

    Google Scholar 

  15. V. G. Karnaukhov, “Thermodynamic theory of generalized thermorheologically simple viscoelastic ferromagnetic materials with a fading memory,”Prikl. Mekh.,35, No. 1, 45–49 (1999) (Int. Appl. Mech.,35, No. 1, 41–45 (1999)).

    MATH  Google Scholar 

  16. V. G. Karnaukhov and B. P. Gumenyuk,Thermomechanics of Predeformed Viscoelastic Bodies [in Russian], Nauk. Dumka, Kiev (1990).

    MATH  Google Scholar 

  17. V. G. Karnaukhov and I. K. Senchenkov, “Fundamental thermomechanical theory of viscoelasticity for generalized thermorheologically simple materials,”Prikl. Mekh.,15, No. 2, 41–48 (1979).

    MathSciNet  Google Scholar 

  18. V. G. Karnaukhov and I. K. Senchenkov, “Thermodynamic theory of differential media with internal variables,”Prikl. Mekh.,15, No. 8, 19–27 (1979).

    MathSciNet  Google Scholar 

  19. V. G. Karnaukhov and I. K. Senchenkov, “Certain simplified models in the fundamental thermomechanical theory of nonlinear viscoelasticity,”Vopr. Dinam. Prochn.,36, 127–137 (1980).

    Google Scholar 

  20. V. G. Karnaukhov and I. K. Senchenkov, “Modeling thermomechanical processes in the ultrasonic welding of plastics,” in: N. A. Shul'ga and V. T. Tomashevskii, eds.,Processing Stresses and Strains in Materials [in Russian], Vol. 6 of the 12-vol.Mechanics of Composites, A.S.K. Publ., Kiev (1997), pp. 81–115.

    Google Scholar 

  21. A. D. Kovalenko and V. G. Karnaukhov, “Equations and solution of certain problems of the theory of viscoelastic shells,”Symposium: Thermal Stresses in Structural Elements, Nauk. Dumka, Kiev (1967), Vol. 7, pp. 11–24.

    Google Scholar 

  22. A. D. Kovalenko and V. G. Karnaukhov, “Linearized theory of thermoviscoelasticity,”Mekh. Polim., No. 2, 214–221 (1972).

    Google Scholar 

  23. A. D. Kovalenko and V. G. Karnaukhov, “Heat generation in viscoelastic shells of revolution during periodic excitation,”Symposium: Thermal Stresses in Structural Elements, Nauk. Dumka, Kiev (1971), Vol. 11, pp. 5–11.

    Google Scholar 

  24. A. D. Kovalenko and V. G. Karnaukhov, “Main features of the behavior of viscoelastic orthotropic shells made of a generalized thermorheologically simple material,” Nauk. Dumka, Kiev (1972), Vol. 12, 5–18.

    Google Scholar 

  25. V. G. Karnaukhov and I. F. Kirichok,Mechanics of Coupled Fields in Structural Elements, Vol. 4, Thermoelectroviscoelasticity [in Russian], Nauk. Dumka, Kiev (1988).

    Google Scholar 

  26. B. E. Pobedrya, “Coupled problems of thermoviscoelasticity,”Mekh. Polim., No. 3, 415–421 (1969).

    Google Scholar 

  27. B. E. Pobedrya, “Coupled problems of continuum mechanics,”Symposium: Elasticity and Inelasticity [in Russian], Izd. MGU (1971), Vol. 2, pp. 224–253.

    Google Scholar 

  28. A. Ya. Gol'dman,Prediction of the Deformation-Strength Properties of Polymers and Composites [in Russian], Khimiya, Leningrad (1988).

    Google Scholar 

  29. P. Pezhina,Physical Theory of Viscoelasticity [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  30. P. Pezhina and V. Voino, “Unified constitutive equations for a viscoelastoplastic material,”Mekhanika: Novoe v Zarubezhnoi Nauke, No. 7, 91–110 (1976).

    Google Scholar 

  31. Yu. N. Rabotnov,Creep in Structural elements [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  32. L. I. Sedov,Continuum Mechanics [in Russian], Vol. 1, Nauka, Moscow (1969).

    MATH  Google Scholar 

  33. I. K. Senchenkov, “Toward a theory of simple media with thermomechanical constraints,”Transactions of the II All-Republic Conference of Young Scientists in Mechanics, Nauk. Dumka, Kiev (1979), pp. 204–207.

    Google Scholar 

  34. I. K. Senchenkov, “Constitutive equations of the theory of simple media with differential constraints,”Dopov. Akad. Nauk Ukr. RSR Ser. A, No. 7, 60–63 (1980).

    MathSciNet  Google Scholar 

  35. I. K. Senchenkov and Ya. A. Zhuk, “Thermodynamic analysis of one model of the thermoviscoplastic deformation of materials,”Prikl. Mekh.,33, No. 2, 41–48 (1997) (Int. Appl. Mech.,33, No. 2, 122–128 (1997).

    Google Scholar 

  36. I. K. Senchenkov and V. G. Karnaukhov, “Toward a theory of media of the integro-differential type,”Dopov. Akad. Nauk Ukr. RSR Ser. A, No. 4, 288–293 (1979).

    MathSciNet  Google Scholar 

  37. I. K. Senchenkov and V. G. Karnaukhov, “One variant of the fundamental thermomechanical theory of viscoelasticity for thermorheologically simple materials,”Prikl. Mekh.,17, No. 5, 38–44 (1981).

    Google Scholar 

  38. I. K. Senchenkov and V. G. Karnaukhov, “Certain general variational principles of thermomechanics,”Mekh. Elastomerov, 43–50 (1981).

  39. I. K. Senchenkov, Ya. A. Zhuk, G. A. Tabieva, and O. P. Chervinko, “Simplified models of the coupled thermoviscoplastic behavior of bodies during harmonic loading,”Prikl. Mekh.,33, No. 9, 24–33 (1997) (Int. Appl. Mech.,33, No. 9, 698–705 (1997)).

    Google Scholar 

  40. I. K. Senchenkov, Ya. A. Zhuk and G. A. Tabieva, “Thermodynamically consistent modification of generalized models of thermoviscoplasticity,”Prikl. Mekh.,34, No. 4, 53–60 (1998) (Int. Appl. Mech. 34, No. 4 345–351 (1998)).

    MATH  Google Scholar 

  41. V. P. Tamuzh and V. S. Kuksenko,Micromechanics of the Fracture of Polymers [in Russian], Zinatne, Riga (1978).

    Google Scholar 

  42. V. N. Poturaev, V. I. Dyrda, V. G. Karnaukhov, et al., in:Thermomechanics of Elastomeric Structural Elements Under Cyclic Loading [in Russian], Nauk. Dumka, Kiev (1987).

    Google Scholar 

  43. V. G. Karnaukhov, I. K. Senchenkov, and B. P. Gumenyuk,Thermomechanical Behavior of Viscoelastic Bodies During Harmonic Loading [in Russian], Nauk. Dumka, Kiev (1985).

    Google Scholar 

  44. K. Truesdell,Introductory Course in Rational Continuum Mechanics [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  45. Yu. S. Urzhumtsev and R. D. Maksimov,Prediction of the Deformation of Polymers [in Russian], Zinatne, Riga (1975).

    Google Scholar 

  46. J. Ferry,Viscoelastic Properties of Polymers [Russian translation], IL, Moscow (1963).

    Google Scholar 

  47. G. Astarita, “Thermodynamics of dissipative materials with entropic elasticity,”Polym. Eng. Sci.,14, No. 10, 730–733 (1974).

    Article  Google Scholar 

  48. M. A. Biot, “A theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena,”J. Appl. Phys.,25, No. 11, 1385–1391 (1954).

    Article  MATH  ADS  Google Scholar 

  49. M. A. Biot, “A virtual dissipation principle and Lagrangian equations in nonlinear irreversible thermodynamics,”Bull. Classe Sci.,61, No. 5, 6–30 (1975).

    MathSciNet  Google Scholar 

  50. J. L. Chaboche, “Cyclic viscoplastic constitutive equations. Part 1: A thermodynamically consistent formulation,”Trans. ASME, J. Appl. Mech.,60, No. 4, 813–821 (1993).

    Article  MATH  Google Scholar 

  51. P. Chadwick, “Thermodynamics of rubberlike materials,”Philos. Trans. R. Soc. London A,267, No. 1260, 371–403 (1974).

    ADS  Google Scholar 

  52. P. Y. P. Chen, “Thermoelastic stresses in cylinders due to cooling down from high temperature,”J. Therm. Stresses,7, No. 2, 197–205 (1984).

    Article  Google Scholar 

  53. B. D. Coleman, “Thermodynamics of materials with memory,”Arch. Rat. Mech. Anal.,17, No. 1, 1–46 (1964).

    Google Scholar 

  54. B. D. Coleman, “On thermodynamics, strain impulses, and viscoelasticity,”Arch. Rat. Mech. Anal.,17, No. 3, 230–254, (1964).

    MATH  Google Scholar 

  55. B. D. Coleman and M. E. Gurtin, “Thermodynamics with internal state variables,”J. Chem. Phys.,47 No. 2, 597–613, (1967).

    Article  ADS  Google Scholar 

  56. B. D. Coleman and W. Noll, “Foundation of linear viscoelasticity,”Rev. Modern Phys.,33, No. 2, 239–249 (1961).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. B. D. Coleman and W. Noll, “The thermodynamics of elastic materials with heat conduction and viscosity,”Arch. Rat. Mech. Anal.,13, 167–178 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  58. M. J. Crochet and P. M. Naghdi, “A class of simple solids with fading memory,”Int. J. Eng. Sci.,7, No. 12, 1173–1198 (1967).

    MathSciNet  Google Scholar 

  59. M. J. Crochet and P. M. Naghdi, “On thermorheologically simple solids,” in:Thermoinelasticity: Symposium, East Kilbrige, Springer-Verlag, Vienna-New York (1970), pp. 59–86.

    Google Scholar 

  60. D. G. Edelen, “On the existence of symmetry relations and dissipation potentials,”Arch. Rat. Mech. Anal.,51, No. 3, 218–227 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  61. D. G. Edelen, “Primitive thermodynamics: a new look at the Clausius-Duhem inequality,”Int. J. Eng. Sci.,12, No. 2, 121–141 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  62. J. D. Ferry, “Mechanical properties of substances of high molecular weight; VI: Dispersion in concentrated polymer solutions and its dependence on temperature and concentration,”J. Am. Chem. Soc.,72, 37–46 (1950).

    Article  Google Scholar 

  63. W. N. Findley, J. S. Lai, and K. Onoran,Creep and Relaxation of Nonlinear Viscoelastic Materials, Amsterdam—New York—Oxford (1976).

  64. A. E. Green, P. M. Naghdi, and J. A. Trapp, “Thermodynamics of continuum with internal constraints,”Int. J. Eng. Sci.,8, No. 11, 891–908 (1970).

    Article  MATH  Google Scholar 

  65. A. E. Green and R. S. Rivlin, “The mechanics of nonlinear materials with memory. Part 1.,”Arch. Rat. Mech. Anal.,1, No. 1, 1–21 (1957).

    MATH  MathSciNet  Google Scholar 

  66. M. E. Gurtin and P. P. Guidugli, “The thermodynamics of constrained materials,”Arch. Rat. Mech. Anal.,51, No. 3, 192–208 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  67. H. Leaderman,Elastic and Creep Properties of Filamentous Materials and Other High Polymers, Washington (1943), p. 175.

  68. G. Lianis, “Nonlinear thermorheologically simple materials,” in:Proc. V. Int. Congr. Rheol., Kyoto (1968), No. 1, pp. 313–335.

  69. F. J. Lockett,Nonlinear Viscoelastic Solids, Acad. Press, N. Y. (1972).

    MATH  Google Scholar 

  70. J. Lubliner, “On fading memory in materials of evolutionary type,”Acta Mech.,8, No. 1-2, 75–81 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  71. J. Lubliner, “On the structure of the rate equations of materials with internal variables,”Acta Mech.,17, No. 2-2, 109–119 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  72. S. R. Lustig, R. M. Shay Jr., and J. M. Caruthers, “Thermodynamic constitutive equations for materials with memory on a material time scale,”J. Rheol.,40, No. 1, 68–106 (1996).

    ADS  MathSciNet  Google Scholar 

  73. G. A. Maugin, “The method of virtual power in continuum mechanics: Application to coupled fields,”Acta Mech.,35, No. 1/2, 1–70 (1980).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. L. W. Morland and E. H. Lee, “Stress analysis for linear viscoelastic materials with temperature variation,”Trans. Soc. Rheol.,4, No. 1, 233 (1960).

    Article  MathSciNet  Google Scholar 

  75. R. Muki and E. Stenberg, “On transient thermal stresses in viscoelastic materials with temperature dependent properties,”J. Appl. Mech.,28, No. 1, 193 (1961).

    MATH  Google Scholar 

  76. S. Nemat-Nasser, “On nonequilibrium thermodynamics of continua,” in:Mechanics Today, Vol. 2, Pergamon Press Inc., N.Y.—Toronto—Oxford—Sydney—Braunschweig (1972), pp. 94–158.

    Google Scholar 

  77. S. Nemat-Nasser, “On nonequilibrium thermodynamics of viscoelasticity: Inelastic potentials and normality condition,” in:Mech. of Visco. Elast. Med. and IUTAM Symp., Gothenburg (1975), pp. 375–391.

  78. G. C. Sarti and N. Esposito, “Testing thermodynamic constitutive equations for polymers by adiabatic deformation experiments,”J. Non-Newtonian Fluid Mech.,3, No. 1, 65–76 (1977).

    Article  Google Scholar 

  79. G. W. Scheres,Relaxation in Glass and Composites, J. Wiley and Sons, N.Y. (1986).

    Google Scholar 

  80. F. Schwarzl and A. J. Staverman, “Time-temperature dependence of linear viscoelastic behavior,”J. Appl. Phys.,23, No. 8, 838–843 (1951).

    ADS  Google Scholar 

  81. R. A. Schapery, “Application of thermodynamics to thermomechanical fracture and birefringent phenomena in viscoelastic media,”J. Appl. Phys.,35, 1451–1465 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  82. R. A. Schapery, “On the crystallization of nonlinear viscoelastic materials,”Polym. Eng. Sci.,9, No. 4, 295–310 (1969).

    Article  Google Scholar 

  83. R. A. Schapery, “On a thermodynamics constitutive theory and its application to various nonlinear materials,” in: B. A. Boley, ed.,IUTAM Symp. Thermoinelasticity, East Kilbrige, 1968, Springer-Verlag, Vienna, N.Y. (1970), pp. 259–285.

    Google Scholar 

  84. E. C. Ting, “Dissipation function of a viscoelastic material with temperature dependent properties,”J. Appl. Phys.,44, No. 11, 4956–4960 (1973).

    Article  ADS  Google Scholar 

  85. I. F. Tormey and S. C. Britton, “Effect of cyclic loading on solid propellant grain structures,”AIAA J.,1, No. 8, 3–7 (1963).

    Google Scholar 

  86. J. A. Trapp, “Reinforced materials with thermomechanical constraints,”Int. J. Eng. Sci.,9, No. 8, 757–773 (1971).

    Article  MATH  Google Scholar 

  87. C. Truesdell, “The mechanical foundations of elasticity and fluid dynamics,”J. Rat. Mech. Anal.,1, No. 2 125–300 (1952).

    MathSciNet  Google Scholar 

  88. K. R. Valanis, “A theory of viscoplasticity without a yield surface,”Arch. Mech.,23, No. 4, 517–533 (1971).

    MathSciNet  Google Scholar 

  89. K. R. Valanis,Irreversible Thermodynamics of Continuous Media, Springer-Verlag, Vienna, N.Y. (1971).

    Google Scholar 

  90. H. Ziegler, “Some extremum principles in irreversible thermodynamics with application to continuum mechanics,” in:Progress in Solid Mechanics, J. Wiley and Sons, N.Y. (1963), Vol. 4, pp. 93–193.

    Google Scholar 

  91. H. Ziegler, “Systems with integral parameters obeying the orthogonality conditions,”Z. Angew. Math. Phys.,23, No. 4, 553–566 (1972).

    MATH  Google Scholar 

  92. H. Ziegler, “Grund problem der thermomechanics,”Z. Angew. Math. Phys.,28, No. 5, 965–977 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  93. H. Ziegler,An Introduction to Thermodynamics, North Holland, Amsterdam (1977).

    Google Scholar 

Download references

Authors

Additional information

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 1, pp. 53–77, January, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnaukhov, V.G., Senchenkov, I.K. Generalized models of the thermomechanical behavior of viscoelastic materials with allowance for the interaction of mechanical and thermal fields (review). Int Appl Mech 36, 40–63 (2000). https://doi.org/10.1007/BF02681959

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02681959

Keywords

Navigation