Skip to main content
Log in

Biplastic pipes for high-pressure oil pipeline systems

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

A high-performance, corrosion-resistant biplastic pipe for high-pressure oil pipeline systems is presented. The pipe combines an outer load-carrying layer formed from unidirectionally glass-reinforced plastic (GRP) sublayers by wet multi-circuit winding and an inner sealing layer of high-density polyethylene. Both demountable and permanent joints, tees, and other parts are constructed for these pipes. The biplastic pipes ensure reliable operation of oil pipeline systems under a pressure of up to 200 bar. The experimental results and calculated estimates of the strength of biplastic pipes are presented. The results of using these pipes in oil pipeline systems in the Perm’ region are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Gonik and G. G. Kornilov, “Reasons and mechanism of local corrosion of the inner surface of oil production pipelines at oil fields of Western Siberia,” Zashchita Korrozii Okhrana Okruzh. Sredy, Nos. 7–8, 2–6 (1999).

  2. M. L. Osipov, V. A. Kol’tsov, and A. L. Bushkovskii, “Experience in corrosion protection of oil production equipment in “Tomskneft” Co. of VNK,” Vestnik VNK, No. 3, 96–99 (1998).

  3. K. I. Zaitsev, “To the problem of designing plastic pipelines in oil and gas industry,” Stroitel’stvo Truboprovodov, No. 5, 14–18 (1995).

  4. A. S. Obukhov, Design of Chemical Equipment of Glass-Fiber-Reinforced Composites and Plastics [in Russian], Mashinostroenie, Moscow (1995).

    Google Scholar 

  5. M. M. Zagirov, A. G. Stebletsov, I. G. Yusupov, et al., “Experience in production and application of pipes with inner protection coatings at the plants of oil industry,” Survey Information. Ser. Corrosion Control and Protection of the Environment, Issue 2, Moscow (1989).

  6. V. I. Agapthev, V. A. Martyashova, N. G. Mikhailenko, et al., “Prospectives for application of pipes of polymeric materials in oil and gas industry,” Survey Information. Ser. Corrosion and Protection in Oil and Gas Industry, Issue 3, Moscow (1988).

  7. V. Romeyko, “What are plastic pipelines and what are they needed for?,” Truboprovody Ekologiya, No. 2, 3–5 (1999).

  8. V. Bukhin, “Advanced technological pipelines made of polyvinylidenetofluoride,” Truboprovody Ekologiya, No. 3, 10–12 (1998).

  9. Instructions for Designing Technological Pipelines of Plastic Pipes, SN 550-82, Stroyizdat, Moscow (1983).

  10. A. F. Larionov, F. M. Sharifullin, I. S. Manushakyan, M. I. Shiryaev, R. M. Khachaturov, A. A. Tul’nikov, N. I. Kobyakov, and N. G. Permyakov, “Pipe,” Pat. No. 2095676, Patented/Applied 18.07.95, No. 95112315/06 (021295).

  11. A. F. Larionov, F. M. Sharifullin, I. S. Manushakyan, M. I. Shiryaev, R. M. Khachaturov, A. A. Tul’nikov, N. I. Kobyakov, and V. G. Pavlyukevich, “A unit for joining reinforced plastic pipes,” Pat. No. 2094690, Patented/Applied 18.07.95, No. 95112281/06 (021322).

  12. Yu. A. Vorontsov, A. F. Larionov, V. B. Kasatkin, “Manufacturing method for combined pipes,” Pat. No. 2100201, Patented/Applied 25.04.96, No. 96108442/25 (014112).

  13. A. F. Larionov, N. I. Kobyakov, V. G. Pavlyukevich, E. I. Bogomol’nyi, and V. R. Drachuk, “Manufacturing method for pipes,” Pat. No. 2105672, Patented/Applied 25.04.96, No. 96108443/25 (014107).

  14. A. F. Larionov, N. I. Kobyakov, and A. A. Dzhavadyan, “A device for manufacturing pipes of composite materials,” Pat. No. 210099, Patented/Applied 25.04.96, No. 96108137/25 (014092).

  15. V. M. Aleksandrov, A. F. Larionov, and A. B. Minkevich, “A device for polymerization of pipes,” Pat. No. 2114001, Patented/Applied 25.04.96, No. 96108208/25 (014140).

  16. O. V. Flyagin, A. F. Larionov, and I. E. Kovzalin, “A machine for winding pipes of fibrous composite materials on a mandrel,” Pat. No. 2113999, Patented/Applied 25.04.96, No. 96108136/25 (014089).

  17. O. V. Flyagin, A. F. Larionov, and V. G. Pavlyukevich, “A device for winding curvilinear pipes,” Pat. No. 2097191, Patented/Applied 25.04.96, No. 96108595/25 (014125).

  18. B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izdat. Moskovsk. Universiteta, Moscow (1984).

    Google Scholar 

  19. A. M. Skudra and F. Ya. Bulavs, Strength of Reinforced Plastics [in Russian], Khimiya, Moscow (1982).

    Google Scholar 

  20. E. V. Meshkov, V. I. Kulik, A. S. Nilov, Z. T. Upitis, and A. A. Sergeev, “Investigation of the mechanical characteristics of statistically loaded unidirectional composite materials,” Mech. Compos. Mater.,27, No. 3, 307–314 (1991).

    Article  Google Scholar 

  21. A. Ya. Gol’dman, Strength of Structural Plastics [in Russian], Mashinostroenie, Leningrad (1979).

    Google Scholar 

  22. E. M. Wu, “Phenomenological failure criteria for anisotropic media,” in: L. J. Broutman and R. H. Krock (eds.), Composite Materials. Vol. 2. Mechanics of Composite Materials, Academic Press, New York—London (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 407–418, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anoshkin, A.N., Tashkinov, A.A., Larionov, A.F. et al. Biplastic pipes for high-pressure oil pipeline systems. Mech Compos Mater 36, 241–248 (2000). https://doi.org/10.1007/BF02681876

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02681876

Keywords

Navigation