Skip to main content
Log in

Failure of particulate reinforced polymers

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

In this presentation, a review is given on the main effects of mineral particulate fillers (with an aspect ratio of about unity) on the deformation and fracture of amorphous and semicrystalline thermoplastic and thermosetting polymers. Elastomeric modifiers, polymer blends, and filled elastomers are not considered here. Fillers are generally used to reduce cost as well as the thermal sensitivity of mechanical properties of the matrix material and to improve, if possible, the strength and toughness. The addition of particulate fillers influences all stages of the fabrication and use of the resulting composites. We focus on the effects of a stiff second phase on elastic moduli, matrix structure, and on deformation, creep, and failure mechanisms. As the main mechanisms, particle-matrix debonding, void formation, and matrix microshear yielding are identified. Toughness is less sensitive to the quality of adhesion since particle-matrix debonding and formation of voids can be tolerated. If well controlled, debonding contributes to deformation (formation of voids should be well distributed in space and time). Reference is also made to the surprising and positive effect of CaCO3 particles on the toughness and impact resistance of HDPE, which increases at small interparticle distances due to interfacial effects on lamellar growth in the ligament area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Katz and J. V. Milewski (eds.), Handbook of Fillers and Reinforcements for Plastics. 2nd ed., Van Nostrand Reinhold Co., New York (1987).

    Google Scholar 

  2. H. P. Schlumpf, in: R. Gächter and H. Müller (eds.), Plastics Additives. Ch. 9, Hanser Publishers, Munich (1993).

    Google Scholar 

  3. R. Rothon (ed.), Particulate-Filled Polymer Composites, Longman Polymer Sci. & Technol. Series, Essex (1995).

  4. “Mineral fillers in thermoplastics,” Adv. Polym. Sci.,139, Springer, Berlin—Heidelberg (1999).

  5. EUROFILLERS, International Symposium, Lyon, Sept. 6–9 (1999).

  6. L. E. Nielsen and R. F. Landel, Mechanical Properties of Polymers and Composites, Marcel Dekker Inc., New York (1994).

    Google Scholar 

  7. P. H. T. Vollenberg and D. Heikens, Polymer,30, 1656 (1989).

    Article  CAS  Google Scholar 

  8. S. C. Tjong, R. K. Y. Li, and T. Cheung, Polym. Eng. Sci.,37, 166 (1997).

    Article  CAS  Google Scholar 

  9. Th. Labour, Thèse No. 99 ISAL0012, Institut National des Sciences Appliquées de Lyon, Lyon (1999).

  10. J. Spanoudakis and R. J. Young, J. Mater. Sci.,19, 473, 487 (1984).

    Article  CAS  Google Scholar 

  11. J. W. Smith, PhD Thesis, Thèse No. 792, Ecole Polytechnique Fédérale de Lausanne (1989).

  12. T. Kaiser, W. J. Cantwell, J. W. Smith, and A. C. Moloney, Swiss Mater.,1, 17 (1989).

    CAS  Google Scholar 

  13. G. R. Joppien, Angew. Makromol. Chem.,70, 189 (1978).

    Article  CAS  Google Scholar 

  14. H. P. Schlumpf, Omya Kontakt No. 172 (1994).

  15. A. C. Moloney, H. H. Kausch, T. Kaiser, and H. R. Beer, J. Mater. Sci.,22, 381 (1987).

    Article  CAS  Google Scholar 

  16. W. J. Cantwell, A. C. Moloney, and T. Kaiser, J. Mater. Sci.,23, 1615 (1988).

    Article  CAS  Google Scholar 

  17. Y. Nakamura and M. Yamaguchi, Polym. Eng. Sci.,33, 279 (1993).

    Article  CAS  Google Scholar 

  18. L. Nicolais and M. Narkis, Polym. Eng. Sci.,11, 194 (1971).

    Article  CAS  Google Scholar 

  19. J. Nairn, Invited Lecture, EUROFILLERS, International Symposium, Lyon, Sept. 6–9 (1999).

  20. J. G. M. van Mier, E. Schlangen, and A. Verwuur, Micromechanics of Concrete and Cementitious Composites, Presses Poltechniques et Universitaires Romandes, Lausanne (1993), p. 159.

    Google Scholar 

  21. F. Stricker, M. Bruch, and R. Mühlhaupt, Polymer,21, 5347 (1997).

    Article  Google Scholar 

  22. G. H. Michler, Kunststoff-Mikromechanik, Hanser—Munchen—Wien (1992).

  23. G.-M. Kim, G.H. Michler, Polymer,39, 5689, 5699 (1998).

    Article  CAS  Google Scholar 

  24. Z. Bartczak, A. S. Argon, R. E. Cohen, and M. Weinberg, Polymer,40, 2347 (1999).

    Article  CAS  Google Scholar 

  25. R. Walter, K. Friedrich, V. Privalko, and A. Savadori, J. Adhes.,64, 87 (1997).

    Article  CAS  Google Scholar 

  26. H. H. Kausch, R. Gensler, Ch. Grein, C. J. G. Plummer, and P. Scaramuzzino, J. Macromol. Sci. — Physics,B38, 803 (1999).

    Article  CAS  Google Scholar 

  27. J. W. Smith, T. Kaiser, and A. C. Moloney, J. Mater. Sci.,23, 3833 (1988).

    Article  CAS  Google Scholar 

  28. H. R. Beer, T. Kaiser, A. C. Moloney, and H. H. Kausch, J. Mater. Sci.,21, 3661 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000).

Published in Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 305–316, March–April, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kausch, H.H., Beguelin, P. & Fischer, M. Failure of particulate reinforced polymers. Mech Compos Mater 36, 177–184 (2000). https://doi.org/10.1007/BF02681868

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02681868

Keywords

Navigation