Skip to main content
Log in

Comparative analysis of turbulence models

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A comparative analysis is performed for a complete locally anisotropic turbulence model of the second order and existing turbulence models. The comparison draws on experimental data, data of a direct numerical simulation of the nonstationary Navier-Stokes equations for a developed channel flow and a uniform channel flow with a constant velocity shift, and results for turbulence damping behind a grid. The K-ɛ model and the quasi-isotropic turbulence model are shown to have marked disadvantages, especially in describing turbulent flows with a high degree of anisotropy of pulsatory motion. Use of a locally anisotropic turbulence model improves the accuracy of determining Reynolds stresses. Consideration is given to the advantages and disadvantages of the turbulence models discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. C. Patel, W. Rodi, and G. Scheuerer,AIAA J.,23, 1308–1319 (1985).

    Article  MathSciNet  Google Scholar 

  2. W. Rodi and N. N. Mansour,J. Fluid Mech.,250, 509–529 (1993).

    Article  MATH  Google Scholar 

  3. E. P. Sukhovich,Izv. Akad. Nauk Latv. SSR, Teplofiz. Gidrogazodinamika, No. 1, 65–72 (1990).

  4. B. E. Launder, G. J. Reece, and W. Rodi,J. Fluid Mech.,68, 537–566 (1975).

    Article  MATH  Google Scholar 

  5. T. B. Gatski and C. G. Speziale,J. Fluid Mech.,254, 59–78 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  6. B. E. Launder, in: A. S. Ginevskii (ed.),Turbulent Shear Flows [Russian translation], Vol. 1, Moscow (1982), pp. 270–279.

    MathSciNet  Google Scholar 

  7. B. E. Launder and A. Morse, in: A. S. Ginevskii (ed.),Turbulent Shear Flows [Russian translation], Vol. 1, Moscow (1982), pp. 291–310.

    Google Scholar 

  8. E. P. Sukhovich,Inzh.-Fiz. Zh.,72, No. 3, 576–583 (1999).

    Google Scholar 

  9. E. P. Sukhovich,Inzh.-Fiz. Zh.,72, No. 4, 663–671 (1999).

    Google Scholar 

  10. E. P. Sukhovich,Inzh.-Fiz. Zh.,72, No. 5, 886–895 (1999).

    Google Scholar 

  11. S. Tavoularis and S. Corrsin,J. Fluid Mech.,104, 311–367 (1981).

    Article  Google Scholar 

  12. F. H. Champagne, V. G. Harris, and S. Corrsin,J. Fluid Mech.,41, Pt. 1, 81–139 (1970).

    Article  Google Scholar 

  13. V. G. Harris, J. A. Graham, and S. Corrsin,J. Fluid Mech.,81, Pt. 4, 657–687 (1977).

    Article  Google Scholar 

  14. S. Tavoularis and U. Carnik,J. Fluid Mech.,204, 457–478 (1989).

    Article  Google Scholar 

  15. E. P. Sukhovich,Izv. Akad. Nauk Latv. SSR, Teplofiz. Gidrogazodinamika, No. 3, 68–84 (1988).

  16. W. J. Feiereisen, E. Scirani, J. H. Ferziger, and W. C. Reynolds, in:Turbulent Shear Flow, Vol. 3 (1982), pp. 309–321.

    Google Scholar 

  17. M. Gad-el-Hak and S. Corrsin,J. Fluid Mech.,62, Pt. 1, 115–143 (1974).

    Article  Google Scholar 

  18. N. N. Mansour, J. Kim, and P. Moin,J. Fluid Mech.,194, 15–44 (1988).

    Article  Google Scholar 

  19. M. M. Rogers and P. Moin,J. Fluid Mech.,176, 33–66 (1987).

    Article  Google Scholar 

  20. M. J. Lee, J. Kim, and P. Moin,J. Fluid Mech.,216, 561–583 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 73, No. 2, pp. 328–339, March—April, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhovich, E.P. Comparative analysis of turbulence models. J Eng Phys Thermophys 73, 318–329 (2000). https://doi.org/10.1007/BF02681737

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02681737

Keywords

Navigation