Skip to main content
Log in

Nano-size molecular conductors on silicon substrate-Toward device integration of conductive CT salts-

  • Thin Films, Devices, Nanostructures
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Nano-size crystals of molecular conductors have been directly formed on SiO2/doped-Si substrates. Two kinds of methods were used for this on-site crystal growth, one of which is electrochemical crystallization on electrodes prepared on the substrate, and the other of which is direct reaction of metal copper or silver electrodes with acceptor molecules such as DCNQI (= N,N′-Dicyanobenzoquinonediimine) derivatives on the substrate. In both cases, we have succeeded in bridging two or more electrodes with the single crystal of the molecular conductors. Temperature dependence of the resistivity often exhibited significantly different behaviors from those of the corresponding bulk crystals. Origins of the unusual behaviors of the nanocrystals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Tajima, J. Fujisawa, N. Naka, T. Ishihara, R. Kato, Y. Nishio, and K. Kajita,J. Phys. Soc. Jpn,74, 511 (2005).

    Article  ADS  Google Scholar 

  2. M. Chollet, L. Guerin, N. Uchida, S. Fukaya, H. Shimoda, T. Ishikawa, K. Matsuda, T. Hasegawa, A. Ota, H. Yamochi, G. Saito, R. Tazaki, S. Adachi, and S. Koshihara,Science,307, 86 (2005).

    Article  ADS  Google Scholar 

  3. H. Yamochi, T. Haneda, A. Tracz, J. Ulanski, O. Drozdova, K. Yakushi, and G. Saito,J. Phys. IV,114, 591 (2003).

    Google Scholar 

  4. T. Ishiguro, K. Yamaji, G. Saito,Organic Superconductors, Springer: Berlin, (1997)

    Google Scholar 

  5. P. Monceau, F. Nad, and S. Brazovskii,Phys. Rev. Lett,86, 4080 (2001).

    Article  ADS  Google Scholar 

  6. N. Hanasaki, H. Tajima, M. Matsuda, T. Naito, T. Inabe,Mol. Cryst. Liq. Cryst. 343, 41 (2000).

    Article  Google Scholar 

  7. J. S. Brooks,Adv. Materials Opt. Elec,8, 269 (1998)

    Article  Google Scholar 

  8. T. Hasegawa, K. Mattenberger, J. Takeya, and B. Batlogg,Phys. Rev. B,69, 245115 (2004)

    Article  ADS  Google Scholar 

  9. R. Kato,Bull. Soc. Chem. Jpn. 73, 515 (2000) and references cited therin.

    Article  Google Scholar 

  10. K. Bechgaard, C.S. Jacobsen, K. Mortensen, H.J. Pedersen, N Thorup,.Solid State Commun. 33, 1119 (1980)

    Article  Google Scholar 

  11. K. Bender, I. Hennig, D. Schweizer, K. Dietz, H. Endres, and H. J. Keller,Mol. Cryst. Liq. Cryst. 108, 359 (1984).

    Article  Google Scholar 

  12. A. Ota, H. Yamochi, G. Saito,J. Materials Chem,12, 2600 (2002).

    Article  Google Scholar 

  13. H. M. Yamamoto, J. -I. Yamaura, R. Kato,J. Amer. Chem. Soc. 120, 5905 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, H.M., Ito, H., Shigeto, K. et al. Nano-size molecular conductors on silicon substrate-Toward device integration of conductive CT salts-. J Low Temp Phys 142, 215–220 (2006). https://doi.org/10.1007/BF02679497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679497

PACS numbers

Navigation