Skip to main content
Log in

Hematopoietic growth factors in autologous transplantation

  • Published:
Biotherapy

Abstract

Hematopoietic growth factors (HGFs) sustain the survival, proliferation and differentiation of hematopoietic stem cells and some functions of mature blood cells. In man several HGFs have been characterised and cloned so far, and this has allowed investigators to confer the rationale for the clinical application of these molecules in hematology and oncology. In particular G-CSF and GM-CSF are currently utilised to abrogate the hematological toxicity of chemotherapy for standard and dose-intensified therapy, neutropenia following bone marrow and peripheral blood stem cell transplantation. Moreover there has recently been great interest in the ex vivo expansion of hematopoietic stem and progenitor cells for a variety of applications, such as in vitro tumor cell purging or for reducing the volume of blood processed by the leukapheresis. Several combinations of HGFs have been described to sustain the ex vivo survival and proliferation of these cells disclosing new opportunities in the field of stem cells transplants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HGFs:

Hematopoietic Growth Factors

G-CSF:

Granulocyte Colony-Stimulating Factor

GM-CSF:

Granulocyte Monocyte Colony-Stimulating Factor

EPO:

Erythropoietin

M-CSF:

Monocyte Colony-Stimulating Factor

IL-5:

Interleukin-5

IL-3:

Interleukin-3

SCF:

Stem Cell Factor

KR:

c-kit Receptor

BFU-MK:

Burst Forming Unit Megakaryocyte

HPP-CFC:

High Proliferative Potential Colony-Forming Cell

LTC-IC:

Long-Term Culture-Initiating Cell

FL:

Flt3-ligand

CFU-GM:

Granulocyte-Monocyte Colony-Forming Unit

CFU-M:

Monocyte Colony-Forming Unit

IL-6:

Interleukin-6

IL-11:

Interleukin-11

CFU-GEMM:

Granulocyte-Erythrocyte-Monocyte-Megakaryocyte Colony-Forming Unit

CFU-MK:

Megakarocyte Colony-Forming Unit

CFU-Eos:

Eosinophil Colony-Forming Unit

BFU-E:

Erythroid Burst-Forming Unit

CFU-G:

Granulocyte Colony-Forming Unit

ADCC:

Antibody-Dependent Cell-mediated Cytotoxicity

TNF:

Tumor Necrosis Factor

TPO:

Thrombopoietin

CFU-mix:

Multilineage Colony-Forming Unit

CAMs:

Cell Adhesion Molecules

PBPC:

Peripheral Blood Progenitor Cells

PB:

Periferal Blood

LTBMCs:

Long Term Bone Marrow Cells

CFCs:

Colony-Forming Cells

NGF-β:

Nerve Growth Factor Beta

CFU-C:

Colony-Forming Unit-Cell

References

  1. Clark SC, Camen R. The human hematopoietic colony stimulating factors. Science 1987; 236: 1229–37.

    Article  PubMed  CAS  Google Scholar 

  2. Berardi A, Wang A, Levine JD, Lopez P, Scadden DT. Functional isolation and characterization of human hematopoietic stem cells. Science 1995; 267: 104–108.

    Article  PubMed  CAS  Google Scholar 

  3. Bernnstein ID, Andrews RG, Zsebo KM. Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34+ lin cells, and the generation of colony-forming cell progeny from cd 34+ lin cells cultured with IL-3, granulocyte-colony stimulating factor, or granulocyte-machrophage colony stimulating factor. Blood 1991; 77: 2316–24.

    Google Scholar 

  4. Cheng T, Shen H, Giokas D, Gere J, Tenen DG, Scadden DT. Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells. Proc. Natl. Acad. Sci. USA 1996; 93: 13258–63.

    Google Scholar 

  5. Andrews G, Knitter GH, Bartelmex SH, Langley KE, Farrar D, Hendren RW, Appelbaum FR, Bemstein ID, Zsebo KM. Recombinant human stem cell factor, a c-kit ligand, stimulates hematopoiesis in primates. Blood 1991; 78: 1975–83.

    PubMed  CAS  Google Scholar 

  6. Hoffman R, Tong J, Brandt J, Traycoff C, Bruno E, McGuire BW, Gordon MS, McNiece I, Srour EF. The in vitro and in vivo effects of stem cell factor on human hematopoiesis. Stem-Cells-Dayt. 1993; 11 Suppl 2: 76–82.

    PubMed  CAS  Google Scholar 

  7. Matthews W, Jordan CT, Wiegand GW, Pardoll D, Lemischka IR. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched population. Cell 1991; 65: 1143–48.

    Article  PubMed  CAS  Google Scholar 

  8. Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF, Kastelein R, Hudak S, Wagner J, Mattson J, Luh J, Duda G, Martina N, Peterson D, Menon S, Shanafelt A, Muench M, Kelner G, Namikawa R, Rennick D, Roncarolo MG, Zlotnik A, Rosnet O, Dubreuil P, Bimbaum D, Lee F. Ligand for FIt3/Flk2 receptor tyrosine kinaseregulates growth of hematopoietic stem cells and is encoded by variant RNAs. Nature 1994; 368: 643–46.

    Article  PubMed  CAS  Google Scholar 

  9. Lyman SD, James L, Johnson L, Brasel K, deVries P, Escobar SS, Downey H, Splett RR, Beckmann MP, McKenna HJ. Cloning of the human omologue of the murine Flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood 1994; 83: 2795–802.

    PubMed  CAS  Google Scholar 

  10. Shah AJ, Smogorzewska EM, Hannum C, Crooks GM. Ftl3 ligand induces proliferation of quiescent human bone marrow cd34+ cd38 cells and mantains progenitor cells in vitro. Blood. 1996; 87: 3563–70.

    PubMed  CAS  Google Scholar 

  11. Gabbianelli M, Pelosi E, Montesoro E, Valtieri M, Luchetti L, Dsamoggia P, Vitelli L, Barberi T, Testa U, Lyman S, Peschle C. Multi level effects of Flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomoocytic progenitors/monocytic precursors. Blood 1995; 86: 1661–70.

    PubMed  CAS  Google Scholar 

  12. Hirayama F, Lyman SD, Clark SC, Ogawa M. The Flt3 ligand supports proliferation of lymphohematopoietic progenitors and early B-lymphoid progenitors. Blood 1995; 85: 1762–68.

    PubMed  CAS  Google Scholar 

  13. Namikawa R, Muench MO, de Vries JE, Roncarolo MG. The Flk2/FIt3 ligand syergizes with interleukin-7 in promoting stromal-cell-independent expansion and differentiation of human fetal pro-B cells in vitro. Blood 1996; 87: 1881–90.

    PubMed  CAS  Google Scholar 

  14. Jacobsen SEW, Okkenhaug C, Myklebust J, Veiby OP, Lyman SD. The Flt3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors. I. Exp. Med. 1995; 181: 1357–63.

    Article  CAS  Google Scholar 

  15. Molineux G, McCrea C, Yan XQ, Kerzic P, McNiece I. Ftl3 ligand synergizes with granulocyte colony-stimulating factor to increase neutrophil numbers and to mobilize peripheral lood stem cells with long term repopulating potential. Blood 1997; 89: 3998–4004.

    PubMed  CAS  Google Scholar 

  16. McNiece I, Andrews R, Stewart M, Clark S, Boone T, Quesenberry P. Action of interleukin-3, G-CSF, and GM-CSF on highly enriched human hematopoietic progenitor cells: synergistic interaction of GM-CSF plus G-CSF. Blood 1989; 74: 110–14.

    PubMed  CAS  Google Scholar 

  17. Lopez AF, To LB, Yang YC, Gamble JR, Shanon MF, urns GF, Dyson PG, Tuttner CA, Clark S, Vadas MA. Stimulation of proliferation, differentiation, and functuion of human cells by primate interleukin-3. Proc. Natl. Acad. Sci. USA 1987; 84: 2761–65.

    Article  PubMed  CAS  Google Scholar 

  18. Rusthoven JJ, Eisenhauer E, Mazurka J, Hirte H, O Connell G, Muldal A, Lu HX, Onetto N, Swenerton K, Jeffrey J Phase I clinical trial of recombinant human interleukin-3 combined with carboplatin in the treatment of patients with recurrent ovarian carcinoma. Natl Cancer Inst 1993; 85: 823–25.

    Article  CAS  Google Scholar 

  19. Ganser A, Lindemann A, Seipelt G, Ottmann OG, Herrmann F, Eder M, Frisch J, Schulz G, Mertelsmann R, Hoelzer D Effects of recombinant human interleukin-3 in patients with normal hematopoiesis and in patients with bone marrow failure. Blood 1990; 76: 666–16.

    PubMed  CAS  Google Scholar 

  20. Lindemann A, Ganser A, Errmann F, Frich J, Seipelt G, Schulz G, Holzer D, Mertelsmann R. Biologic effects of recombinant interleukin-3 in vivo. J. Clin. Oncol. 1991; 12: 2120–27.

    Google Scholar 

  21. Postmus PE, Gietema JA, Damsma O, Biesma B, Limburg PC, Vellenga E, deVriest EGE. Effects of recombinant human interleukin-3 in patients with relapsed small cell lung cancer treated with chemotherapy: a dose-finding study. J. Clin. Oncol. 1992; 10: 1331–40.

    Google Scholar 

  22. Lieschke GJ, Burgess AW. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (2). N. Engl. J. Med. 1992; 327: 99–106.

    Article  PubMed  CAS  Google Scholar 

  23. Gasson JC. Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 1991; 77: 1131–45.

    PubMed  CAS  Google Scholar 

  24. Vadas MA, Nicola NA, Metcalf D. Activation of antibody dependent cell mediated cytotoxicity of human neutrophils and eosinophils by separate colony-stimulating factors. J. Immunol. 1983; 130: 795–99.

    PubMed  CAS  Google Scholar 

  25. Weisbart RH, Kacena A, Schuh A, Golde DW. GM-CSF induced human neutrophil IgA-mediated phagocytosis by an IgA Fc receptor activation mechanism. Nature 1988, 332: 647–48.

    Article  PubMed  CAS  Google Scholar 

  26. Aglietta M, Piacibello W, Sanavio F, Stacchini A, Apra F, Schena M, Mossetti C, Carnino F Caligaris-Cappio F, Gavosto F. Kinetics of human hemopoietic cells after in vivo administration ofgranulocyte-macrophage colony-stimulating factor. J Clin Invest 1995; 83: 551–57.

    Google Scholar 

  27. Aglietta M, Bussolino F, Piacibello W, Apra F, Sanavio F, Stacchini A, Monzeglio C, Carnino F, Gavostó F. Human GM-CSF in vivo: identification of the target cells and of their kinetics of response. Int. J. Cell Cloning 1990; 8: 283–90.

    PubMed  Google Scholar 

  28. Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC, Chazin VR, Bruszewski J, Lu H. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 1986; 232: 61–65.

    Article  PubMed  CAS  Google Scholar 

  29. Avalos BR, Gasson JC, Hedvat C, Quan SG, Baldwin GC, Weisbart RH, Willianis RE, Golde DW, DiPersio JF. Human granulocyte colony-stimulating factor: biologic activities and receptor characterization on hematopoietic cells and small cell lung cancer cell lines. Blood 1990; 75: 851–57.

    PubMed  CAS  Google Scholar 

  30. Platzer E, Welte K, Gabrilove JL, Lu L, Harris P, Mertelsmann R, Moore MA. Biological activities of a human pluripotent hemopoietic colony stimulating factor on normal and leukemic cells. J Exp Med 1985; 162: 1788–801.

    Article  PubMed  CAS  Google Scholar 

  31. Okabe T, Takaku F. In vivo granulocytopoietic activities of human recombinant granulocyte colony-stimulating factor. Exp. Hematol. 1986; 14: 475–81.

    Google Scholar 

  32. Kaushansky K, Broudy VC, Lin N, Jorgensen MJ, McCarty J, Fox N, Zucher-Franklin D, Lofton-Day C. Thrombopoietin, the Mpl ligand, is essential for full megakaryocyte development. Proc. Natl. Acad. Sci. USA 1995; 92: 3234–38.

    Article  PubMed  CAS  Google Scholar 

  33. Kaushansky K, Broudy VC, Grossmann A, Humes J, Lin N, Ren HP, ailey MC, Papayannopoulou T, Forstrom J, Sprugel KH. Thrombopoietin expands erythroid progenitors, increases red cell production, and enhances erythroid recovery after myclosuppressive therapy. J. Clin. Invest. 1995; 96: 1683–87.

    PubMed  CAS  Google Scholar 

  34. Kobayashi M, Laver JH, Kato T, Miyazaki H, Ogawa M. Thrombooietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or ini:erleukin-3. Blood 1996; 88: 429–36.

    PubMed  CAS  Google Scholar 

  35. Petzer AL, Zandstra PW, Iret JM, Eaves CJ. Differential cytochine effects on primitive (CD34+ CD38) human hematopoietic cells: novel responses to Ftl3 ligand and thrombopoietin. J. Exp. Med. 1996; 183: 2551–58.

    Article  PubMed  CAS  Google Scholar 

  36. Bretti S, Gilleece MH, Kamthan A, Fitzsimmons L, Hicks F, Rowlands M, Bishop P, Picardo AM, Dexter TM, Scarffe JH. An open phase I study to assess the biological effects of a continuous intravenous infusion of Interleukin-3 followed by Granulocyte Macrophage-Colony Stimulating Factor. Eur J Cancer, 1996; 32A: 1171–8

    Article  PubMed  CAS  Google Scholar 

  37. Scadden DT, Levine JD, Bresnahan J, Gere J, McGrath J, Wang Z, Resta DJ, Young D, Hammer SM. In vivo effects of interleukin 3 in HIV type 1-infected patients with cytopenia. AIDS Res Hum Retroviruses, 1995; 11: 731–40.

    Article  PubMed  CAS  Google Scholar 

  38. Younes A, Sarris A, Consoli U, Rodriguez A, McLaughlin P, Huh Y, Starry S, Cabanillas F Andreeff M. A pilot study of high-dose interleukin-3 treatment of relapsed follicular small cleaved-cell lymphoma: hematologic, immunologic, and clinical results. Blood, 1996, 87: 1698–703.

    PubMed  CAS  Google Scholar 

  39. Cairo MS, Suen Y, Sender L, Gillan ER, Ho W, Plunkett JM, VandeVen C. Circulating granulocyte colony-stimulating factor (G-CSF) levels after allogeneic and autologous bone marrow transplantation: endogenous G-CSF production correlates with myeloid engraftment. Blood. 1992; 79: 1869–73.

    PubMed  CAS  Google Scholar 

  40. Lieschke GJ, Burgess AW. Granulocyte colony stimulating factor and granulocyte-macrophage colony stimulating factor (1). N. Engl: J. Med. 1992; 327: 28–35.

    Article  CAS  Google Scholar 

  41. Neidhart JA. Hematopoictic colony-stimulating factors. Uses in combination with standard hemotherapeutic regimens and in support of dose intensification. Cancer. 1992; 70: 913–20.

    PubMed  CAS  Google Scholar 

  42. Schriber JR, Chao NJ, Long GD, Negrin RS, Tierney DK, Kusnierz Glaz C, Lucas KS, Blume KG. Granulocyte colony-stimulating factor after allogeneic bone marrow transplantation. Blood. 1994; 84: 1680–4.

    PubMed  CAS  Google Scholar 

  43. Khwaja A, Mills W, Leveridge K, Goldstone AH, Linch DC. Efficacy of delayed granulocyte colony-stimulating factor after autologous BMT. Bone Marrow Transplant. 1993; 11: 479–82.

    PubMed  CAS  Google Scholar 

  44. Schriber JR, Chao NJ, Long GD, Negrin RS, Tierney DK, Kusnierz Glaz C, Lucas KS, Blume KG. Granulocyte colony-stimulating factor after allogeneic bone marrow transplantation. Blood. 1994; 84: 1680–4.

    PubMed  CAS  Google Scholar 

  45. Schuening FG, Nemunaitis J, Appelbaum FR, Storb R. Hematopoietic growth factors after allogeneic marrow transplantation in animal studies and clinical trials. Bone-Marrow-Transplant. 1994; 14: 74–7.

    Google Scholar 

  46. Mire-Sluis AR, Das RO, Thorpe R: The intemational standard for g;ranulocyte colony stimulating factor (G-CSF). Evaluation in an international collaborative study. J. Immunol. Methods 1995; 179: 117–20.

    Article  PubMed  CAS  Google Scholar 

  47. Oisselbrecht C, Prentice O, Bacigalupo A, Biron P, Milpied N, Rubie H, Cunningham D, Legros M, Pico IL, Linch DC, Burnett AK, Scarffe IH, Siegert W, Yver A: A phase III randomised placebo-controlled study of lenograstim (glycosylated rHuG-CSF) in 315 paediatric and adult autologous or allogeneic bone marrow transplant patients. Lancet 1994; 343: 696–702.

    Article  Google Scholar 

  48. Brandt SJ, Peters WP, Atwater SK, Kurtzberg J, Borowitz MJ, Jones RB, Shpall EJ, Bast RC, Gilbert CJ, Oette DH. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high dose chemotherapy and autologous bone marrow transplantation. N. Engl. J. Med. 1988, 318: 869–76.

    Article  PubMed  CAS  Google Scholar 

  49. Rabinowe SN, Meuberg D, Bierman PJ, Vose JM, Nemuanatis J, Singer JW, Freedman AS, Mauch P, Demetri G, Onetto N, Gillis S, Oette D, Buckner D, Hansen JA, Ritz J, Armitage JO, Nadler LM, Applebaum FR. Long term follow up of a phase III study of recombinant human granulocyte-macrophage colony stimulating factor after autologous bone marrow transplantation for lymphoid malignances. Blood. 1993; 81: 1903–08.

    PubMed  CAS  Google Scholar 

  50. Khwaja A, Linch DC, Goldstone AH, Chopra R, Marcus RE, Wimperis JZ, Russell NH, Haynes AP, Milligan DW, Leyland MJ. Recombinant human granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for malignant lymphoma: a British National Lymphoma Investigation double-blind, placebo-controlled trial. Br.J.Haematol. 1992; 82: 317–23.

    PubMed  CAS  Google Scholar 

  51. Gorin NC, Coiffier B, Hayat M, Fouillard L, Kuentz M, Flesch M, Colombat P, Boivin P, Slavin S, Philip T. Recombinant human granulocyte-macrophage colony-stimulating factor after high-dose chemotherapy and autologous bone marrow transplantation with unpurged and purged marrow in non-Hodgkin’s lymphoma: a double-blind placebo-controlled trial. Blood. 1992; 80: 1149–57.

    PubMed  CAS  Google Scholar 

  52. Aglietta M, Ardizzoni A, Avanzi GC, Conte PF, Galligioni E, Lorusso V, Luporini G, Mantovani A, Marangolo M, Miniero R, Moretta L, Parmiani G, Pergola M, Rosso R, Tarella C, Venturini M. GM-CSF in oncology: limits and possibilities. ANM consensus meeting. FORUM 1994; 4: 746–49.

    Google Scholar 

  53. Goodman Gilmans A, Rall TW, Nies AS, Taylor P. Goodman and Gilman’s The pharmacological basis therapeutics 1997; p. 1317.

  54. Civin IC, Strauss LC, Brovall C, Fackler MJ, Schwartz H, Shaper JK. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-la cells. J. Immunol. 1984; 133: 157–65.

    PubMed  CAS  Google Scholar 

  55. Brand J, Baird N, Lu L, Srour E, Hoffman R. Characterization of a human progenitor cell capable of forming blast cell containing colonies in vitro. J. Clin. Invest. 1988; 82: 1017–24.

    Article  Google Scholar 

  56. Tavassoli M, Hardy CL: Molecular basis of homing of intravenously transplanted stem cells. Blood 1990; 76: 1059–63.

    PubMed  CAS  Google Scholar 

  57. Long MW: Blood cell cytoadhesion molecules. Exp. Hematol. 1992; 20: 288–92.

    PubMed  CAS  Google Scholar 

  58. Simmons PI, Zannettino A, Oronthos S, Leavesley D: Potential adhesion mechanisms for localisation of haemopoicitic progenitors to bone marrow stroma. Leuk. Lyrnphoma 1994; 12: 353–57.

    Article  CAS  Google Scholar 

  59. Levesque IP, Haylock DN, Simmons PI. Cytokine regulation of proliferation and cell adhesion are correlated events in human CD34+ hemopoictic progenitors. Blood 1996; 88: 1168–73.

    PubMed  CAS  Google Scholar 

  60. To LB, Haylock DN. Dowse T, Simmons PI, Trimboli S, Ashman LK. Juttner CA: A comparative study of the phenotype and proliferative capacity of peripheral blood (PB) CD34 cells mobilized by four different protocols and those of steady-phase PB and bone marrow CD34 cells. Blood 1994; 84: 2930–36.

    PubMed  CAS  Google Scholar 

  61. To LB, Haylock DN, Kimler RJ, Juttner CA: High Levels of circulating hemopoietic stem cells in very early remission from acute non-lymphoblastic leukaemia and their collection; and cryopreservation. Br. J. Haematol. 1984; 58: 399–404.

    PubMed  CAS  Google Scholar 

  62. To LB, Sheppard KM, Haylock DN, Dyson PG, Charles P, Thorpe DL, Dale BM, Dart OW, Roberts MM, Sage RE, Jurtter CA. Single high doses of cyclophosphamide enable the collection of high numbers of hemopoictic stem cells from the peripheral blood. Exp Hematol 1989; 88: 442–49.

    Google Scholar 

  63. Schwartzberg LS, Birch R, Hazelton B, Tauer KW, Lee P, Altemose MD, George C, Blanco R, Wittlin F, Cohen I, Muscato I, West WH. Peripheral blood stem cell mobilization by chemotherapy with and without recombinant human granulocyte colony-stimulating factor. J. Hematother 1992; 1: 317–23.

    PubMed  CAS  Google Scholar 

  64. Haynes A, Hunter A, McQuaker O, Anderson S, Bienz N, Russell NH: Engrafiment characteristics of peripheral blood stem cells mobilised with cyclophosphamide and the delayed addition of G-CSF. Bone Marrow Transplant 16: 359, 1995.

    PubMed  CAS  Google Scholar 

  65. Duhrsen U, Villeval J-L, Boyd I, Kannourakis O, Morstyn G, Metcalf D. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progertitor c;ells in cancer patients. Blood 1988; 72: 2074–79.

    PubMed  CAS  Google Scholar 

  66. Demuynck H, Pettengell R, decampos E, Dexter TM, Testa NO. The capacity of peripheral blood stem cells mobilized with chemotherapy plus G-CSF to repopulate irradiated marrow stroma in vitro is similar to that of bone marrow. Eur. J. Cancer 1992; 28: 381–87.

    Article  PubMed  CAS  Google Scholar 

  67. Sheridan WP, Begley CO, Juttner CA, Szer I, To LB, Maher D, McGrath KM, Morstyti O, Fox RM. Effect of peripheral blood progenitor cells mobilized by fllgrastim (Cr-CSF) on platelet recovery after high does chemotherapy. Lancet 1992; 339: 640–648.

    Article  PubMed  CAS  Google Scholar 

  68. Hoglund M, Smedmyr B, Simonsson B, Totterman T, Bengtsson M: Dose-dependent mobilisation of haematopoictic progenitor cells in healthy volunteers receiving glycosylated rHuG-CSF. Bone Marrow Transplant. 1996; 18: 19–25.

    PubMed  CAS  Google Scholar 

  69. Waller CF, Bertz H, Wenger MK, Fetscber S, Hardung M, Engelhardt M, Behringer D, Lange W, Mertelsmann R, Finke I. Mobilization of peripheral blood progenitor cells for allogeneic transplantation: Efficacy and toxicity of a high-dose rhG-CSF regimen. Bone Marrow Transplant 1996; 18: 279–85.

    PubMed  CAS  Google Scholar 

  70. Hoglund M, Bengesson M, Cour-Chabemaud Y, DabouzHarrouche F, Simonsson B, Smedmyr B, Torrerman T. Glycosylated rHuG-CSF is more potent than non-glycosylatetl rHuG-CSF in mobilisation of peripheral blood progenitor cells (PB PC) in healthy volunteers. Blood 1995; 86:464a, (abstr, suppl 1).

    Google Scholar 

  71. Socinski MA, Cannistra SA, Elias A, Anttnan KIl, Schnipper L, Griffin ID: Granulocyte-macrophage colony-stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1988; 1: 1194–98.

    Article  PubMed  CAS  Google Scholar 

  72. Gianni AM, Siena S, Bregni M, Tarella C, Stem AC, Piler A, Bonadonna O. Granulocyte-macnophage colony-stimulating factor to harvest circulating hemopoietic stem cells for autotransplantation. Lancet 1989; 2: 580–583.

    Article  PubMed  CAS  Google Scholar 

  73. Haas R, Ho AD, Bredthauer U, Cayeux, Egerer G. Knauf W, Hunstein W. Successful autologous transplantation of blood stem cells mobilized with recombinant human granulocytemacrophage colony-stimulating factors. Exp. Hematol. 1990; 18: 94–99.

    PubMed  CAS  Google Scholar 

  74. Villeval IL, Duhrsen U, Morstyn G, Metcalf D: Effect of recombinant human granulocyte-macrophage colony stimulating factor on progenitor cells in patients with advance malignancies. Br. J. Haematol. 1990; 74: 36–41.

    PubMed  CAS  Google Scholar 

  75. Elias AD, Ayash L, Anderson KC, Hunt M, Wheeler C, Schwaztz O, Tepler I, Mazanet R, Lynch C, Pap S. Mobilization of peripheral blood progenitor cells by chemtherapy and granulocyte macrophage colony stimulating factor for hematologic support after high dose intensification for breast cancer. Blood 1992; 79: 3036–41.

    PubMed  CAS  Google Scholar 

  76. Peters WP, Rosner G, Ross M, Vredenburgh I, Meisenberg B, Gilbert C, Kurtzberg I. Comparative effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) on priming peripheral blood progenitor cells for use with autologous bone marrow after high-dose chemotherapy. Blood 1993; 81: 1709–14.

    PubMed  CAS  Google Scholar 

  77. Bolwell BJ, Goormastic M, Yanssens T, Dannley R, Baucco P, Fishleder A. Comparison of G-CSF with GM-CSF for mobilizing peripheral blood progenitor cells and for enhancing marrow recovery after autologous bone marrow transplant. Bone Marrow Transplant. 1994; 14: 913–8.

    PubMed  CAS  Google Scholar 

  78. Koller MR, Emerson SG, Palsson BO. Large scale expansion of human stem and progeitor cells from bone marrow mononuclear cells in continuous perfusion culturc:s. Blood 1993; 82: 378–84.

    PubMed  CAS  Google Scholar 

  79. Lemieux ME, Rebel VI, Lansdorp PM, Eaves CJ. Characterization and purification of a primitive hematopoietic cell type in adult mouse marrow capable of lymphomyeloid differentiation in long-term marrow ’switch’ cultures. Blood 1995; 86: 1339–47.

    PubMed  CAS  Google Scholar 

  80. Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC, Eaves CJ. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl. Acad. Sci. USA 1990; 87: 3584–88.

    Article  PubMed  CAS  Google Scholar 

  81. Ploemacher RE, van der Sluijs JP, van Beurden CA, Baert MR, Chan PL. Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 1991; 78: 2527–33.

    PubMed  CAS  Google Scholar 

  82. Hogge DE, Lansdorp PM, Reid D, Gerhard B, Eaves CJ. Enhanced detection maintenance and differentiation of primitive human hematopoietic cells in cultures containing murine fibroblasts engineered to produce human steel factor, interleukin-3, and granulocyte colony-stimulating factor. Blood 1996; 88: 3765–73.

    PubMed  CAS  Google Scholar 

  83. Lansdorp PM, Dragowska W. Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J. Exp. Med. 1992; 175: 1501–509.

    Article  PubMed  CAS  Google Scholar 

  84. Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS, Largman C, Lawrence HJ, Humphries RK. Differential expression of homeobox genes infunctionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl. Acad. Sci. USA 1994; 91: 12223–27.

    Article  PubMed  CAS  Google Scholar 

  85. Petzer AL, Hogge DE, Landsdorp PM, Reid DS, Eaves CJ. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc. Natl. Acad. Sci. USA 1996; 93: 1470–74.

    Article  PubMed  CAS  Google Scholar 

  86. Piacibello W, Sanavio F, Garetto L, Severino A, Bergandi D, Ferrario J, Fagioli F, Berger M, Aglietta M. Extensive amplification and self renewal of human primitive hematopoietic stem cells from cord blood. Blood 1997; 89: 2644–53.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Carlo Avanzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avanzi, G.C., Gallicchio, M. & Saglio, G. Hematopoietic growth factors in autologous transplantation. Biotherapy 10, 299–308 (1998). https://doi.org/10.1007/BF02678550

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678550

Key words

Navigation