Skip to main content

Hematopoietic Growth Factors in the Supportive Care and Treatment of Patients with Hematologic Neoplasms

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

The hematopoietic growth factors (HGFs) are a group of naturally occurring glycoproteins required for the survival, proliferation, and differentiation of hematopoietic cells. Their effects are mediated by high-affinity binding to specific receptors on their hematopoietic target cells. The isolation, purification, cloning, and manufacture of HGFs has permitted their clinical use, originally to correct cytopenias caused by deficiency of specific growth factors, and subsequently in numerous other settings. Recombinant HGFs are used in the treatment of patients with hematologic malignancies to improve disease and treatment-related cytopenias and to mobilize hematopoietic stem cells from the marrow into the peripheral blood from where they can be harvested for autologous and allogeneic hematopoietic cell transplantation. This chapter will focus on the biology and use of the clinically important recombinant HGFs in patients with hematologic malignancies. Those HGFs which are employed clinically will be individually discussed, followed by a description of their application in specific diseases and clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood. 1991;78:2791–808.

    PubMed  CAS  Google Scholar 

  2. Williams GT, Smith CA, Spooncer E, Dexter TM, Taylor DR. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature. 1990;343:76–9.

    Article  PubMed  CAS  Google Scholar 

  3. Begley CG, Metcalf D, Nicola NA. Binding characteristics and proliferative action of purified granulocyte colony-stimulating factor (G-CSF) on normal and leukemic human promyelocytes. Exp Hematol. 1988;16:71–9.

    PubMed  CAS  Google Scholar 

  4. Avalos BR, Gasson JC, Hedvat C, Quan SG, Baldwin GC, Weisbart RH, Williams RE, Golde DW, DiPersio JF. Human granulocyte colony-stimulating factor: biologic activities and receptor characterization on hematopoietic cells and small cell lung cancer cell lines. Blood. 1990;75:851–7.

    PubMed  CAS  Google Scholar 

  5. Hammond WP, Chatta GS, Andrews RG, Dale DC. Abnormal responsiveness of granulocyte-committed progenitor cells in cyclic neutropenia. Blood. 1992;79:2536–9.

    PubMed  CAS  Google Scholar 

  6. Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, Fowler KJ, Basu S, Zhan YF, Dunn AR. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood. 1994;84:1737–46.

    PubMed  CAS  Google Scholar 

  7. Avalos BR. Molecular analysis of the granulocyte colony-stimulating factor receptor. Blood. 1996;88:761–77.

    PubMed  CAS  Google Scholar 

  8. Avalos BR, Broudy VC, Ceselski SK, Druker BJ, Griffin JD, Hammond WP. Abnormal response to granulocyte colony-stimulating factor (G-CSF) in canine cyclic hematopoiesis is not caused by altered G-CSF receptor expression. Blood. 1994;84:789–94.

    PubMed  CAS  Google Scholar 

  9. Hermans MH, Ward AC, Antonissen C, Karis A, Löwenberg B, Touw IP. Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood. 1998;92:32–9.

    PubMed  CAS  Google Scholar 

  10. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity. 1996;5:491–501.

    Article  PubMed  CAS  Google Scholar 

  11. McLemore ML, Poursine-Laurent J, Link DC. Increased granulocyte colony-stimulating factor responsiveness but normal resting granulopoiesis in mice carrying a targeted granulocyte colony-stimulating factor receptor mutation derived from a patient with severe congenital neutropenia. J Clin Invest. 1998;102:483–92.

    Article  PubMed  CAS  Google Scholar 

  12. Richards MK, Liu F, Iwasaki H, Akashi K, Link DC. Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood. 2003;102:3562–8.

    Article  PubMed  CAS  Google Scholar 

  13. Dong F, van Paassen M, van Buitenen C, Hoefsloot LH, Löwenberg B, Touw IP. A point mutation in the granulocyte colony stimulating factor receptor (G-CSF-R) gene in a case of acute myeloid leukemia results in the overexpression of a novel G-CSF-R isoform. Blood. 1995;85:902.

    PubMed  CAS  Google Scholar 

  14. Larsen A, Davis T, Curtis BM, Gimpel S, Sims JE, Cosman D, Park L, Sorensen E, March CJ, Smith CA. Expression cloning of a human granulocyte colony-stimulating factor receptor: A structural mosaic of hematopoietin receptor, immunoglobulin, and fibronectin domains. J Exp Med. 1990;172:1559.

    Article  PubMed  CAS  Google Scholar 

  15. Fukunaga R, Seto Y, Mizushima S, Nagata S. Three different mRNAs encoding human granulocyte colony-stimulating factor receptor. Proc Natl Acad Sci USA. 1990;87:8702.

    Article  PubMed  CAS  Google Scholar 

  16. Tweardy DJ, Anderson K, Cannizzaro LA, Steinman RA, Croce CM, Huebner K. Molecular cloning of cDNAs for the human granulocyte colony-stimulating factor receptor from HL-60 cells and mapping of the gene to chromosome region 1p32-34. Blood. 1992;79:1148.

    PubMed  CAS  Google Scholar 

  17. Tkatch LS, Tweardy DJ. Human granulocyte colony-stimulating factor (G-CSF), the premier granulopoietin: Biology, clinical utility, and receptor structure and function. Lymphokine Cytokine Res. 1993;12:477.

    PubMed  CAS  Google Scholar 

  18. Crawford J, Ozer H, Stoller R, Johnson D, Lyman G, Tabbara I, Kris M, Grous J, Picozzi V, Rausch G. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med. 1991;325:164–70.

    Article  PubMed  CAS  Google Scholar 

  19. American Society of Clinical Oncology. Recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. J Clin Oncol. 1994;12:2471–508.

    Google Scholar 

  20. Ozer H, Miller LL, Schiffer CA, et al. American Society of Clinical Oncology update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based clinical practice guidelines. J Clin Oncol. 1996;14:1957–60.

    Google Scholar 

  21. Ozer H, Armitage JO, Bennett CL, Crawford J, Demetri GD, Pizzo PA, Schiffer CA, Smith TJ, Somlo G, Wade JC, Wade 3rd JL, Winn RJ, Wozniak AJ, Somerfield MR, American Society of Clinical Oncology. 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. J Clin Oncol. 2000;18:3558–85.

    PubMed  CAS  Google Scholar 

  22. Smith TJ, Khatcheressian J, Lyman GH, Ozer H, Armitage JO, Balducci L, Bennett CL, Cantor SB, Crawford J, Cross SJ, Demetri G, Desch CE, Pizzo PA, Schiffer CA, Schwartzberg L, Somerfield MR, Somlo G, Wade JC, Wade JL, Winn RJ, Wozniak AJ, Wolff AC. 2006 Update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol. 2006;24:3187–205.

    Article  PubMed  CAS  Google Scholar 

  23. Gregory SA, Schwartzberg LS, Mo M, Sierra J, Vogel C. Evaluation of reported bone pain in cancer patients receiving chemotherapy in pegfilgrastim clinical trials: a retrospective analysis. Community Oncol. 2010;7:297–308.

    Article  Google Scholar 

  24. Dong F, Brynes RK, Tidow N, Welte K, Löwenberg B, Touw IP. Mutations in the gene for the granulocyte colony-stimulating factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med. 1995;333:487.

    Article  PubMed  CAS  Google Scholar 

  25. Link DC, Kunter G, Kasai Y, Zhao Y, Miner T, McLellan MD, Ries RE, Kapur D, Nagarajan R, Dale DC, Bolyard AA, Boxer LA, Welte K, Zeidler C, Donadieu J, Bellanné-Chantelot C, Vardiman JW, Caligiuri MA, Bloomfield CD, DiPersio JF, Tomasson MH, Graubert TA, Westervelt P, Watson M, Shannon W, Baty J, Mardis ER, Wilson RK, Ley TJ. Distinct patterns of mutations occurring in de novo AML versus AML arising in the setting of severe congenital neutropenia. Blood. 2007;110:1648–55.

    Article  PubMed  CAS  Google Scholar 

  26. Germeshausen M, Ballmaier M, Welte K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood. 2007;109:93–9.

    Article  PubMed  CAS  Google Scholar 

  27. Hunter MG, Avalos BR. Deletion of a critical internalization domain in the G-CSFR in acute myelogenous leukemia preceded by severe congenital neutropenia. Blood. 1999;93(2):440–6.

    PubMed  CAS  Google Scholar 

  28. Hunter MG, Avalos BR. Granulocyte colony-stimulating factor receptor mutations in severe congenital neutropenia transforming to acute myelogenous leukemia confer resistance to apoptosis and enhance cell survival. Blood. 2000;95:2132–7.

    PubMed  CAS  Google Scholar 

  29. Hermans MH, Ward AC, Antonissen C. Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood. 1998;92:32–9.

    PubMed  CAS  Google Scholar 

  30. Rosenberg PS, Alter BP, Bolyard AA, Bonilla MA, Boxer LA, Cham B, Fier C, Freedman M, Kannourakis G, Kinsey S, Schwinzer B, Zeidler C, Welte K, Dale DC, Severe Chronic Neutropenia International Registry. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood. 2006;107:4628–35.

    Article  PubMed  CAS  Google Scholar 

  31. Socie G, Mary JY, Schrezenmeier H, Marsh J, Bacigalupo A, Locasciulli A, Fuehrer M, Bekassy A, Tichelli A, Passweg J. Granulocyte-stimulating factor and severe aplastic anemia: a survey by the European Group for Blood and Marrow Transplantation (EBMT). Blood. 2007;109:2794–6.

    Article  PubMed  CAS  Google Scholar 

  32. Metcalf D, Nicola NA. The hematopoietic colony stimulating factors. New York, NY: Cambridge University Press; 1995.

    Book  Google Scholar 

  33. Santiago-Schwarz F, Belilos E, Diamond B, Carsons SE. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J Leukoc Biol. 1992;52:274–81.

    PubMed  CAS  Google Scholar 

  34. Seymour JF, Lieschke GJ, Grail D, Quilici C, Hodgson G, Dunn AR. Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood. 1997;90:3037–49.

    PubMed  CAS  Google Scholar 

  35. Sieff CA, Emerson SG, Donohue RE, Nathan DG, Wang EA, Wong GG, Clark SC. Human recombinant granulocyte-macrophage colony-stimulating factor: a multilineage hematopoietin. Science. 1985;230:1171–3.

    Article  PubMed  CAS  Google Scholar 

  36. Min L, Mohammad Isa SA, Shuai W, Piang CB, Nih FW, Kotaka M, Ruedl C. Cutting edge: granulocyte-macrophage colony-stimulating factor is the major CD8+ T cell-derived licensing factor for dendritic cell activation. J Immunol. 2010;184:4625–9.

    Article  PubMed  CAS  Google Scholar 

  37. Eksioglu EA, Mahmood SS, Chang M, Reddy V. GM-CSF promotes differentiation of human dendritic cells and T lymphocytes toward a predominantly type 1 proinflammatory response. Exp Hematol. 2007;35:1163–71.

    Article  PubMed  CAS  Google Scholar 

  38. Perugini M, Brown AL, Salerno DG, Booker GW, Stojkoski C, Hercus TR, Lopez AF, Hibbs ML, Gonda TJ, D’Andrea RJ. Alternative modes of GM-CSF receptor activation revealed using activated mutants of the common beta-subunit. Blood. 2010;115:3346–53.

    Article  PubMed  CAS  Google Scholar 

  39. Nemunaitis J, Rabinowe SN, Singer JW, Bierman PJ, Vose JM, Freedman AS, Onetto N, Gillis S, Oette D, Gold M. Recombinant granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med. 1991;324:1773–8.

    Article  PubMed  CAS  Google Scholar 

  40. Ratcliffe PJ, O’Rourke JF, Maxwell PH, Pugh CW. Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol. 1998;201:1153–62.

    PubMed  CAS  Google Scholar 

  41. Kaushansky K. Lineage-specific growth factors. N Engl J Med. 2006;354:2034–45.

    Article  PubMed  CAS  Google Scholar 

  42. Krantz SB. Erythropoietin. Blood. 1991;77:419–34.

    PubMed  CAS  Google Scholar 

  43. Bunn HF. New agents that stimulate erythropoiesis. Blood. 2007;109:868.

    Article  PubMed  CAS  Google Scholar 

  44. Rizzo DJ, Somerfield MR, Hagerty KL, Seidenfeld J, Bohlius J, Bennett CL, Cella DF, Djulbegovic B, Goode MJ, Jakubowski AA, Rarick MU, Regan DH, Lichtin AE, American Society of Clinical Oncology; American Society of Hematology. Use of epoetin and darbepoetin in patients with cancer: 2007 American Society of Hematology/American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2008;26(1): 132–49.

    Article  PubMed  CAS  Google Scholar 

  45. Miller CB, Jones RJ, Piantadosi S, Abeloff MD, Spivak JL. Decreased erythropoietin response in patients with the anemia of cancer. N Engl J Med. 1990;322:1689–92.

    Article  PubMed  CAS  Google Scholar 

  46. Cazzola M, Messinger D, Battistel V, Bron D, Cimino R, Enller-Ziegler L, Essers U, Greil R, Grossi A, Jäger G, LeMevel A, Najman A, Silingardi V, Spriano M, van Hoof A, Ehmer B. Recombinant human erythropoietin in the anemia associated with multiple myeloma or non-Hodgkin’s lymphoma: dose finding and identification of predictors of response. Blood. 1995;86:4446–53.

    PubMed  CAS  Google Scholar 

  47. Rizzo JD, Lichtin AE, Woolf SH, Seidenfeld J, Bennett CL, Cella D, Djulbegovic B, Goode MJ, Jakubowski AA, Lee SJ, Miller CB, Rarick MU, Regan DH, Browman GP, Gordon MS, American Society of Clinical Oncology; American Society of Hematology. Use of epoetin in patients with cancer: Evidence-based clinical practice guidelines of the American Society of Clinical Oncology and the American Society of Hematology. Blood. 2002;100(7):2303–20.

    Article  PubMed  CAS  Google Scholar 

  48. Bohlius J, Wilson J, Seidenfeld J, Piper M, Schwarzer G, Sandercock J, Trelle S, Weingart O, Bayliss S, Brunskill S, Djulbegovic B, Benett CL, Langensiepen S, Hyde C, Engert E. Erythropoietin or Darbepoetin for patients with cancer [review]. Cochrane Database Syst Rev. 2006;(3):CD003407.

    Google Scholar 

  49. Seidenfeld J, Piper M, Bohlius J, Weingart O, Trelle S, Engert A, Skoetz N, Schwarzer G, Wilson J, Brunskill S, Hyde C, Bonnell C, Ziegler KM, Aronson N. Comparative effectiveness of epoetin and darbepoetin for managing anemia in patients undergoing cancer treatment. Comparative effectiveness review no. 3 (Prepared by Blue Cross and Blue Shield Association Technology Evaluation Center Evidence-based Practice Center under Contract No. 290-02-0026.) Washington, DC: Agency for Healthcare Research and Quality; 2006. http://www.effectivehealthcare.ahrq.gov/reports/final.cfm. Accessed 2 Oct 2007.

  50. Bennett CL, Angelotta C, Yarnold PR, Evens AM, Zonder JA, Raisch DW, Richardson P. Thalidomide-and lenalidomide-associated thromboembolism among patients with cancer. JAMA. 2006;296:2558–60.

    Article  PubMed  CAS  Google Scholar 

  51. Qian S, Fu F, Li W, Chen Q, deSauvage FJ. Primary role of the liver in thrombopoietin production shown by tissue-specific knockout. Blood. 1998;92:2189–91.

    PubMed  CAS  Google Scholar 

  52. Yang C, Li YC, Kuter DJ. The physiological response of thrombopoietin (c-Mpl ligand) to thrombocytopenia in the rat. Br J Haematol. 1999;105:478–85.

    Article  PubMed  CAS  Google Scholar 

  53. deSauvage FJ, Carver-Moore K, Luoh S-M, Ryan A, Dowd M, Eaton DL, Moore MW. Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med. 1996;183:651–6.

    Article  CAS  Google Scholar 

  54. Kojima H, Shinagawa A, Shimizu S, Kanada H, Hibi M, Hirano T, Nagasawa T. Role of phosphatidylinositol-3 kinase and its association with Gab1 in thrombopoietin-mediated up-regulation of platelet function. Exp Hematol. 2001;29:616–22.

    Article  PubMed  CAS  Google Scholar 

  55. Sitnicka E, Lin N, Priestley GV, Fox N, Broudy VC, Wolf NS, Kaushansky K. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood. 1996;87:4998–5005.

    PubMed  CAS  Google Scholar 

  56. Li J, Yang C, Xia Y, Bertino A, Glaspy J, Roberts M, Kuter DJ. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood. 2001;98:3241–8.

    Article  PubMed  CAS  Google Scholar 

  57. Kuter DJ, Bussel JB, Lyons RM, Pullarkat V, Gernsheimer TB, Senecal FM, Aledort LM, George JN, Kessler CM, Sanz MA, Liebman HA, Slovick FT, de Wolf JT, Bourgeois E, Guthrie Jr TH, Newland A, Wasser JS, Hamburg SI, Grande C, Lefrère F, Lichtin AE, Tarantino MD, Terebelo HR, Viallard JF, Cuevas FJ, Go RS, Henry DH, Redner RL, Rice L, Schipperus MR, Guo DM, Nichol JL. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: A double-blind randomised controlled trial. Lancet. 2008;371:395–403.

    Article  PubMed  CAS  Google Scholar 

  58. Wang B, Nichol JL, Sullivan JT. Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand. Clin Pharmacol Ther. 2004;76:628–38.

    Article  PubMed  CAS  Google Scholar 

  59. Kantarjian H, Fenaux P, Sekeres MA, Becker PS, Boruchov A, Bowen D, Hellstrom-Lindberg E, Larson RA, Lyons RM, Muus P, Shammo J, Siegel R, Hu K, Franklin J, Berger DP. Safety and efficacy of romiplostim in patients with lower-risk myelodysplastic syndrome and thrombocytopenia. J Clin Oncol. 2009;28:437–44.

    Article  PubMed  CAS  Google Scholar 

  60. Sekeres MA, Kantarjian H, Fenaux P, Becker P, Boruchov A, Guerci-Bresler A, Hu K, Franklin J, Wang YM, Berger D. Subcutaneous or intravenous administration of romiplostim in thrombocytopenic patients with lower-risk myelodysplastic syndromes. Cancer. 2011;117(5):992–1000.

    Article  PubMed  CAS  Google Scholar 

  61. Crivellari D, Bonetti M, Castiglione-Gertsch M, Gelber RD, Rudenstam CM, Thürlimann B, Price KN, Coates AS, Hürny C, Bernhard J, Lindtner J, Collins J, Senn HJ, Cavalli F, Forbes J, Gudgeon A, Simoncini E, Cortes-Funes H, Veronesi A, Fey M, Goldhirsch A. Burdens and benefits of adjuvant cyclophosphamide, methotrexate, and fluorouracil and tamoxifen for elderly patients with breast cancer: The International Breast Cancer Study Group Trial VII. J Clin Oncol. 2000;18:1412–22.

    PubMed  CAS  Google Scholar 

  62. Dees EC, O’Reilly S, Goodman SN, Sartorius S, Levine MA, Jones RJ, Grochow LB, Donehower RC, Fetting JH. A prospective pharmacologic evaluation of age-related toxicity of adjuvant chemotherapy in women with breast cancer. Cancer Invest. 2000;18:521–9.

    Article  PubMed  CAS  Google Scholar 

  63. Gelman RS, Taylor SG. Cyclophosphamide, methotrexate, and 5-fluorouracil chemotherapy in women more than 65 years old with advanced breast cancer: the elimination of trends in toxicity by using doses based on creatinine clearance. J Clin Oncol. 1984;2:1404–13.

    PubMed  CAS  Google Scholar 

  64. Garcia-Carbonero R, Mayordomo JI, Tornamira MV, López-Brea M, Rueda A, Guillem V, Arcediano A, Yubero A, Ribera F, Gómez C, Trés A, Pérez-Gracia JL, Lumbreras C, Hornedo J, Cortés-Funes H, Paz-Ares L. Granulocyte colony-stimulating factor in the treatment of high-risk febrile neutropenia: a multicenter randomized trial. J Natl Cancer Inst. 2001;93:31–8.

    Article  PubMed  CAS  Google Scholar 

  65. Armitage JO, Potter JF. Aggressive chemotherapy for diffuse ­histiocytic lymphoma in the elderly: increased complications with advancing age. J Am Geriatr Soc. 1984;32:269–73.

    PubMed  CAS  Google Scholar 

  66. Doordujin J, Van Der Holt B, Van Der Kem F, et al. Randomized trial of colony-stimulating factors (G-CSF) added to CHOP in elderly patients with aggressive non-Hodgkin’s lymphoma. Blood. 2000;96:133a.

    Google Scholar 

  67. Gomez H, Mas L, Casanova L, Pen DL, Santillana S, Valdivia S, Otero J, Rodriguez W, Carracedo C, Vallejos C. Elderly patients with aggressive non-Hodgkin’s lymphoma treated with CHOP chemotherapy plus granulocyte-macrophage colony-stimulating factor: identification of two age subgroups with differing hematologic toxicity. J Clin Oncol. 1998;16:2352–8.

    PubMed  CAS  Google Scholar 

  68. Morrison VA, Picozzi V, Scott S, Pohlman B, Dickman E, Lee M, Lawless G, Kerr R, Caggiano V, Delgado D, Fridman M, Ford J, Carter WB, Oncology Practice Pattern Study Working Group. The impact of age on delivered dose intensity and hospitalizations for febrile neutropenia in patients with intermediate-grade non-Hodgkin’s lymphoma receiving initial CHOP chemotherapy: a risk factor analysis. Clin Lymphoma. 2001;2:47–56.

    Article  PubMed  CAS  Google Scholar 

  69. Bohlius J, Reiser M, Schwarzer G, Engert A. Granulopoiesis-stimulating factors to prevent adverse effects in the treatment of malignant lymphoma [Update of Cochrane Database Syst Rev. 2002]. Cochrane Database Syst Rev. 2004;(3):CD003189.

    Google Scholar 

  70. Vogel CL, Wojtukiewicz MZ, Carroll RR, Tjulandin SA, Barajas-Figueroa LJ, Wiens BL, Neumann TA, Schwartzberg LS. First and subsequent cycle use of pegfilgrastim prevents febrile neutropenia in patients with breast cancer: a multicenter, double-blind, placebo0-controlled phase III study. J Clin Oncol. 2005;23: 1178–84.

    Article  PubMed  CAS  Google Scholar 

  71. Timmer-Bonte JN, De Boo TM, Smit HJ, Biesma B, Wilschut FA, Cheragwandi SA, Termeer A, Hensing CA, Akkermans J, Adang EM, Bootsma GP, Tjan-Heijnen VC. Prevention of chemotherapy-induced febrile neutropenia by prophylactic antibiotics plus or minus granulocyte colony-stimulating factor in small cell lung cancer: a Dutch randomized Phase III study. J Clin Oncol. 2005;23:7974–84.

    Article  PubMed  CAS  Google Scholar 

  72. Adams JR. When the risk of febrile neutropenia is 20%, prophylactic colony-stimulating factor use is clinically effective, but is it cost-effective? J Clin Oncol. 2006;24:2975–7.

    Article  PubMed  Google Scholar 

  73. Golshayan AR, Jin T, Maciejewski J, Fu AZ, Bershadsky B, Kattan MW, Kalaycio ME, Sekeres MA. Efficacy of growth factors compared to other therapies for low-risk myelodysplastic syndromes. Br J Haematol. 2007;137:125–32.

    Article  PubMed  CAS  Google Scholar 

  74. Jadersten M, Malcovati L, Dybedal I, Della Porta MG, Invernizzi R, Montgomery SM, Pascutto C, Porwit A, Cazzola M, Hellström-Lindberg E. Erythropoietin and granulocyte-colony stimulating factor treatment associated with improved survival in myelodysplastic syndrome. J Clin Oncol. 2008;26:3607–13.

    Article  PubMed  Google Scholar 

  75. A randomized double-blind placebo-controlled study with subcutaneous recombinant human erythropoietin in patients with low-risk myelodysplastic syndromes. Italian Cooperative Study Group for rHuEpo in Myelodysplastic Syndromes. Br J Haematol. 1998;103:1070–4.

    Google Scholar 

  76. Kantarjian H, O’Brien S, Ravandi F, Cortes J, Shan J, Bennett JM, List A, Fenaux P, Sanz G, Issa JP. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113:1351–61.

    Article  PubMed  CAS  Google Scholar 

  77. Kantarjian H, Giles F, List A, Lyons R, Pierce S, Leveque J, Deuson R. The incidence and impact of thrombocytopenia in myelodysplastic syndromes. Cancer. 2007;109:1705–14.

    Article  PubMed  CAS  Google Scholar 

  78. Sekeres MA, Schoonen WM, Kantarjian H, List A, Fryzek J, Paquette R, Maciejewski JP. Characteristics of US patients with myelodysplastic syndromes: results of six cross-sectional physician surveys. J Natl Cancer Inst. 2008;100:1542–51.

    Article  PubMed  Google Scholar 

  79. Huntly BJP, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Cancer. 2005;5:311–21.

    PubMed  CAS  Google Scholar 

  80. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-biology to cancer. Cancer. 2003;3:895–902.

    PubMed  CAS  Google Scholar 

  81. Baer MR, George SL, Dodge RK, O’Loughlin KL, Minderman H, Caligiuri MA, Anastasi J, Powell BL, Kolitz JE, Schiffer CA, Bloomfield CD, Larson RA. Phase 3 study of the multidrug resistance modulator PSC-883 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B study 9720. Blood. 2002;100:1224–32.

    PubMed  CAS  Google Scholar 

  82. Wadleigh M, Stone RM. The role of myeloid growth factors in acute leukemia. J Natl Comp Cancer Netw. 2009;7:84–91.

    CAS  Google Scholar 

  83. Amadori S, Suciu S, Jehn U, Stasi R, Thomas X, Marie JP, Muus P, Lefrère F, Berneman Z, Fillet G, Denzlinger C, Willemze R, Leoni P, Leone G, Casini M, Ricciuti F, Vignetti M, Beeldens F, Mandelli F, De Witte T, EORTC/GIMEMA Leukemia Group. Use of glycosylated recombinant human G-CSF (lenograstim) during and/or after induction chemotherapy in patients 61 years of age and older with acute myeloid leukemia: final results of AML-13, a randomized phase-3 study. Blood. 2005;106:27–34.

    Article  PubMed  CAS  Google Scholar 

  84. Goldstone AH, Burnett AK, Wheatley K, Smith AG, Hutchinson RM, Clark RE, Medical Research Council Adult Leukemia Working Party. Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML 11 trial. Blood. 2001;98:1302–11.

    Article  PubMed  CAS  Google Scholar 

  85. Heil G, Hoelzer D, Sanz MA, Lechner K, Liu Yin JA, Papa G, Noens L, Szer J, Ganser A, O’Brien C, Matcham J, Barge A. A randomized, double-blind, placebo-controlled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. The International Acute Myeloid Leukemia Study Group. Blood. 1997;90:4710–8.

    PubMed  CAS  Google Scholar 

  86. Godwin JE, Kopecky KJ, Head DR, Willman CL, Leith CP, Hynes HE, Balcerzak SP, Appelbaum FR. A double-blind placebo-controlled trial of granulocyte colony-stimulating factor in elderly patients with previously untreated acute myeloid leukemia: a Southwest Oncology Group study (9031). Blood. 1998;91:3607–15.

    PubMed  CAS  Google Scholar 

  87. Dombret H, Chastang C, Fenaux P, Reiffers J, Bordessoule D, Bouabdallah R, Mandelli F, Ferrant A, Auzanneau G, Tilly H, et al. A controlled study of recombinant human granulocyte colony-stimulating factor in elderly patients after treatment for acute myelogenous leukemia. AML Cooperative Study Group. N Engl J Med. 1995;332:1678–83.

    Article  PubMed  CAS  Google Scholar 

  88. Bradstock K, Matthews J, Young G, Lowenthal R, Baxter H, Arthur C, Bashford J, Brighton T, Cannell P, Dunlop L, Durrant S, Enno A, Eliadis P, Gill D, Gillett A, Gottlieb D, Januszewicz H, Joshua D, Leahy M, Schwarer A, Taylor K, Australian Leukaemia Study Group. Effects of glycosylated recombinant human granulocyte colony-stimulating factor after high-dose cytarabine-based induction chemotherapy for adult acute myeloid leukemia. Leukemia. 2001;15:1331–8.

    Article  PubMed  CAS  Google Scholar 

  89. Stone RM, Berg DT, George SL, Dodge RK, Paciucci PA, Schulman P, Lee EJ, Moore JO, Powell BL, Schiffer CA. Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. Cancer and Leukemia Group B. N Engl J Med. 1995;332:1671–7.

    Article  PubMed  CAS  Google Scholar 

  90. Lowenberg B, Boogaerts MA, Daenen SM, Verhoef GE, Hagenbeek A, Vellenga E, Ossenkoppele GJ, Huijgens PC, Verdonck LF, van der Lelie J, Wielenga JJ, Schouten HC, Gmür J, Gratwohl A, Hess U, Fey MF, van Putten WL. Value of different modalities of granulocyte-macrophage colony-stimulating factor applied during or after induction therapy of acute myeloid leukemia. J Clin Oncol. 1997;15:3496–506.

    PubMed  CAS  Google Scholar 

  91. Lowenberg B, Suciu S, Archimbaud E, Ossenkoppele G, Verhoef GE, Vellenga E, Wijermans P, Berneman Z, Dekker AW, Stryckmans P, Schouten H, Jehn U, Muus P, Sonneveld P, Dardenne M, Zittoun R. Use of recombinant GM-CSF during and after remission induction chemotherapy in patients aged 61 years and older with acute myeloid leukemia: final report of AML-11, a phase III randomized study of the Leukemia Cooperative Group of European Organisation for the Research and Treatment of Cancer and the Dutch Belgian Hemato-Oncology Cooperative Group. Blood. 1997;90:2952–61.

    PubMed  CAS  Google Scholar 

  92. Rowe JM, Andersen JW, Mazza JJ, Bennett JM, Paietta E, Hayes FA, Oette D, Cassileth PA, Stadtmauer EA, Wiernik PH. A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (>55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood. 1995;86:457–62.

    PubMed  CAS  Google Scholar 

  93. Zittoun R, Suciu S, Mandelli F, de Witte T, Thaler J, Stryckmans P, Hayat M, Peetermans M, Cadiou M, Solbu G, Petti MC, Willemze R. Granulocyte-macrophage colony-stimulating factor associated with induction treatment of acute myelogenous leukemia: a randomized trial by the European Organization for Research and Treatment of Cancer Leukemia Cooperative Group. J Clin Oncol. 1996;14:2150–9.

    PubMed  CAS  Google Scholar 

  94. Bennett CL, Stinson TJ, Laver JH, Bishop MR, Godwin JE, Tallman MS. Cost analyses of adjunct colony stimulating factors for acute leukemia: can they improve clinical decision making. Leuk Lymphoma. 2000;37:65–70.

    Article  PubMed  CAS  Google Scholar 

  95. Uyl-de Groot CA, Lowenberg B, Vellenga E, Suciu S, Willemze R, Rutten FF. Cost-effectiveness and quality-of-life assessment of GM-CSF as an adjunct to intensive remission induction chemotherapy in elderly patients with acute myeloid leukemia. Br J Haematol. 1998;100:629–36.

    Article  PubMed  CAS  Google Scholar 

  96. Harousseau JL, Witz B, Lioure B, Hunault-Berger M, Desablens B, Delain M, Guilhot F, Le Prise PY, Abgrall JF, Deconinck E, Guyotat D, Vilque JP, Casassus P, Tournilhac O, Audhuy B, Solary E. Granulocyte colony-stimulating factor after intensive consolidation chemotherapy in acute myeloid leukemia: results of a randomized trial of the Groupe Ouest-EstLeucemies Aigues Myeloblastiques. J Clin Oncol. 2000;18:780–7.

    PubMed  CAS  Google Scholar 

  97. Cannistra SA, Groshek P, Griffin JD. Granulocyte-macrophage colony-stimulating factor enhances the cytotoxic effects of cytosine arabinoside in acute myeloblastic leukemia and in the myeloid blast crisis phase of chronic myeloid leukemia. Leukemia. 1989;3:328–34.

    PubMed  CAS  Google Scholar 

  98. Vellenga E, Young DC, Wagner K, Wiper D, Ostapovicz D, Griffin JD. The effects of GM-CSF and G-CSF in promoting growth of clonogenic cells in acute myeloblastic leukemia. Blood. 1987;69:1771–6.

    PubMed  CAS  Google Scholar 

  99. Cannistra SA, DiCarlo J, Groshek P, Kanakura Y, Berg D, Mayer RJ, Griffin JD. Simultaneous administration of granulocyte-macrophage colony-stimulating factor and cytosine arabinoside for the treatment of relapsed acute myeloid leukemia. Leukemia. 1991;5:230–8.

    PubMed  CAS  Google Scholar 

  100. Frenette PS, Desforges JF, Schenkein DP, Rabson A, Slapack CA, Miller KB. Granulocyte-macrophage colony-stimulating factor (GM-CSF) priming in the treatment of elderly patients with acute myelogenous leukemia. Am J Hematol. 1995;49:48–55.

    Article  PubMed  CAS  Google Scholar 

  101. Rowe JM, Neuberg D, Friedenberg W, Bennett JM, Paietta E, Makary AZ, Liesveld JL, Abboud CN, Dewald G, Hayes FA, Tallman MS, Wiernik PH, Eastern Cooperative Oncology. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: a trial by the Eastern Cooperative Oncology Group. Blood. 2004;103:479–85.

    Article  PubMed  CAS  Google Scholar 

  102. Witz F, Sadoun A, Perrin MC, Berthou C, Brière J, Cahn JY, Lioure B, Witz B, François S, Desablens B, Pignon B, Le Prisé PY, Audhuy B, Caillot D, Casassus P, Delain M, Christian B, Tellier Z, Polin V, Hurteloup P, Harousseau JL. A placebo-controlled study of recombinant human granulocyte-macrophage colony-stimulating factor administered during and after induction treatment for de novo acute myelogenous leukemia in elderly patients. Groupe Ouest Est Leucemies Aigues Myeloblastiques (GOELAM). Blood. 1998;91:2722–30.

    PubMed  CAS  Google Scholar 

  103. Lowenberg B, van Putten W, Theobald M, Gmür J, Verdonck L, Sonneveld P, Fey M, Schouten H, de Greef G, Ferrant A, Kovacsovics T, Gratwohl A, Daenen S, Huijgens P, Boogaerts M, Dutch-Belgian Hemato-Oncology Cooperative Group, Swiss Group for Clinical Cancer Research. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med. 2003;349:743–52.

    Article  PubMed  Google Scholar 

  104. Thomas X, Raffoux E, Botton S, Pautas C, Arnaud P, de Revel T, Reman O, Terré C, Corront B, Gardin C, Le QH, Quesnel B, Cordonnier C, Bourhis JH, Elhamri M, Fenaux P, Preudhomme C, Michallet M, Castaigne S, Dombret H. Effect of priming with granulocyte-macrophage colony-stimulating factor in younger adults with newly diagnosed acute myeloid leukemia: a trial by the Acute Leukemia French Association (AFLA) Group. Leukemia. 2007;21:453–61.

    Article  PubMed  CAS  Google Scholar 

  105. Heil G, Chadid L, Hoelzer D, Seipelt G, Mitrou P, Huber C, Kolbe K, Mertelsmann R, Lindemann A, Frisch J, et al. GM-CSF in a double-blind randomized, placebo controlled trial in therapy of adult patients with de novo acute myeloid leukemia (AML). Leukemia. 1995;9:3–9.

    PubMed  CAS  Google Scholar 

  106. Ehlers S, Herbst C, Zimmerman M, Scharn N, Germeshausen M, von Neuhoff N, Zwaan CM, Reinhardt K, Hollink IH, Klusmann JH, Lehrnbecher T, Roettgers S, Stary J, Dworzak M, Welte K, Creutzig U, Reinhardt D. Granulocyte colony-stimulating factor (G-CSF) treatment of childhood acute myeloid leukemias that overexpress the differentiation-defective G-CSF receptor isoform IV is associated with a higher incidence of relapse. J Clin Oncol. 2010;28:2591–7.

    Article  PubMed  CAS  Google Scholar 

  107. Larson RA, Dodge RK, Linker CA, Stone RM, Powell BL, Lee EJ, Schulman P, Davey FR, Frankel SR, Bloomfield CD, George SL, Schiffer CA. A randomized controlled trial of filgrastim during remission induction and consolidation chemotherapy for adults with acute lymphoblastic leukemia: CALGB study 9111. Blood. 1998;92:1556–64.

    PubMed  CAS  Google Scholar 

  108. Hofmann WK, Seipelt G, Langenhan S, Reutzel R, Schott D, Schoeffski O, Illiger HJ, Hartmann F, Balleisen L, Franke A, Fiedler F, Huber C, Rasche H, Bergmann L, Ganser A, Pott C, Pasold R, Rudolph C, Ottmann OG, Gökbuget N, Hoelzer D. Prospective randomized trial to evaluate two delayed granulocyte colony-stimulating factor administration schedules after high-dose cytarabine therapy in adult patients with acute lymphoblastic leukemia. Ann Hematol. 2002;81:570–4.

    Article  PubMed  CAS  Google Scholar 

  109. Weiser MA, O’Brien S, Thomas DA, Pierce SA, Lam TP, Kantarjian HM. Comparison of two different schedules of granulocyte colony-stimulating factor during treatment for acute lymphocytic leukemia with a hyper-CVAD (cyclophosphamide, doxorubicin, vincristine, and dexamethasone) regimen. Cancer. 2002;94:285–91.

    Article  PubMed  CAS  Google Scholar 

  110. Geissler K, Koller E, Hubmann E, Niederwieser D, Hinterberger W, Geissler D, Kyrle P, Knöbl P, Pabinger I, Thalhammer R, Schwarzinger I, Mannhalter C, Jaeger U, Heinz R, Linkesch W, Lechner K. Granulocyte colony-stimulating factor as an adjunct to induction chemotherapy for adult acute lymphoblastic leukemia-a randomized phase-III study. Blood. 1997;90:590–6.

    PubMed  CAS  Google Scholar 

  111. Kantarjian HM, Estey EH, O’Brien S, et al. Intensive chemotherapy with mitoxantrone and high-dose cytosine arabinoside followed by granulocyte-macrophage colony-stimulating factor in treatment of patients with acute lymphocytic leukemia. Blood. 1992;79:876–81.

    PubMed  CAS  Google Scholar 

  112. Ohno R, Tomonaga M, Ohshima T, Masaoka T, Asou N, Oh H, Nishikawa K, Kanamaru A, Murakami H, Furusawa S, et al. A randomized controlled study of granulocyte colony stimulating factor after intensive induction and consolidation therapy in patients with acute lymphoblastic leukemia. Japan Adult Leukemia Study Group. Int J Hematol. 1993;58:73–81.

    PubMed  CAS  Google Scholar 

  113. Holowiecki J, Giebel S, Krzemien S, et al. G-CSF administered in time-sequenced setting during remission induction and consolidation therapy of adult acute lymphoblastic leukemia has beneficial influence on early recovery and possibly improves long-term outcome: a randomized multicenter study. Leuk Lymphoma. 2002;43:315–25.

    Article  PubMed  CAS  Google Scholar 

  114. Bassan R, Lerede T, Di Bona E, Rossi G, Pogliani E, Rambaldi A, Buelli M, Viero P, Rodeghiero F, Izzi T, Corneo G, Barbui T. Granulocyte colony-stimulating (G-CSF, filgrastim) after or during an intensive remission induction therapy for adult acute lymphoblastic leukaemia: effects, role of patient pretreatment characteristics, and costs. Leuk Lymphoma. 1997;26:153–61.

    Article  PubMed  CAS  Google Scholar 

  115. Osterborg A, Brandberg Y, Molostova V, Iosava G, Abdulkadyrov K, Hedenus M, Messinger D, Epoetin Beta Hematology Study Group. Randomized, double-blind, placebo-controlled trial of recombinant human erythropoietin, epoetin beta, in hematologic malignancies. J Clin Oncol. 2002;20:2486–94.

    Article  PubMed  CAS  Google Scholar 

  116. O’Brien S, Kantarjian H, Beran M, et al. Fludarabine and granulocyte colony-stimulating factor (G-CSF) in patients with chronic lymphocytic leukemia. Leukemia. 1997;11:1631–5.

    Article  PubMed  Google Scholar 

  117. Zijlmans JM, Visser JWM, Laterveer L, Kleiverda K, Heemskerk DP, Kluin PM, Willemze R, Fibbe WE. The early phase of engraftment after murine blood cell transplantation is mediated by hematopoietic stem cells. Proc Natl Acad Sci USA. 1998;95:725–9.

    Article  PubMed  CAS  Google Scholar 

  118. Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L, West W. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood. 1995;86(10):3961–9.

    PubMed  CAS  Google Scholar 

  119. Copelan EA, Ceselski SK, Ezzone SA, Lasky LC, Penza SL, Bechtel TP, Klein JL, Hehmeyer DM, Scholl MD, Marshall DD, Elder PJ, Risley GL, Avalos BR. Mobilization of peripheral-blood progenitor cells with high-dose etoposide and granulocyte colony-stimulating factor in patients with breast cancer, non-Hodgkin’s lymphoma, and Hodgkin’s disease. J Clin Oncol. 1997;15(2):759–65.

    PubMed  CAS  Google Scholar 

  120. Stewart DA, Guo D, Luider J, Auer I, Klassen J, Ching E, Morris D, Chaudhry A, Brown C, Russell JA. Factors predicting engraftment of autologous blood stem cells: CD34+ subsets inferior to the total CD34+ cell dose. Bone Marrow Transplant. 1999;23:1237–43.

    Article  PubMed  CAS  Google Scholar 

  121. Schmitz N, Dreger P, Linch DC, Goldstone AH, Boogaerts MA, Ferrant A, Demuynck HM, Link H, Zander A, Barge A. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet. 1996;347:353–7.

    Article  PubMed  CAS  Google Scholar 

  122. Gazitt Y. Comparison between granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor in the mobilization of peripheral blood stem cells. Curr Opin Hematol. 2002;9(3):190–8.

    Article  PubMed  Google Scholar 

  123. Koc ON, Gerson SL, Cooper BW, Laughlin M, Meyerson H, Kutteh L, Fox RM, Szekely EM, Tainer N, Lazarus HM. Randomized cross-over trial of progenitor-cell mobilization: high-dose cyclophosphamide plus granulocyte colony-stimulating factor (G-CSF) versus granulocyte-macrophage colony-stimulating factor plus G-CSF. J Clin Oncol. 2000;18:1824–30.

    PubMed  CAS  Google Scholar 

  124. Weaver CH, Schulman KA, Wilson-Relyea B, Birch R, West W, Buckner CD. Randomized trial of filgrastim, sargramostim, or sequential sargramostim and filgrastim after myelosuppressive chemotherapy for the harvesting of peripheral-blood stem cells. J Clin Oncol. 2000;18:43–53.

    PubMed  CAS  Google Scholar 

  125. Weaver CH, Schulman KA, Buckner CD. Mobilization of peripheral blood stem cells following myelosuppressive chemotherapy: a randomized comparison of filgrastim, sargramostim, or sequential sargramostim and filgrastim. Bone Marrow Transplant. 2001;27 suppl 2:S23–9.

    Article  PubMed  Google Scholar 

  126. Moskowitz CH, Bertino JR, Glassman JR, Hedrick EE, Hunte S, Coady-Lyons N, Agus DB, Goy A, Jurcic J, Noy A, O’Brien J, Portlock CS, Straus DS, Childs B, Frank R, Yahalom J, Filippa D, Louie D, Nimer SD, Zelenetz AD. Ifosfamide, carboplatin, and etoposide: a highly effective cytoreduction and peripheral-blood progenitor-cell mobilization regimen for transplant-eligible patients with non-Hodgkin’s lymphoma. J Clin Oncol. 1999;17(12):3776–85.

    PubMed  CAS  Google Scholar 

  127. DiPersio JF, Micallef INM, Stiff PJ, Bolwell BJ, Maziarz RT, Jacobsen E, Nademanee A, McCarty J, Bridger G, Calandra G, 3101 Investigators. Phase III prospective randomized double-blind placebo-controlled trial of Plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27(28):4767–73.

    Article  PubMed  CAS  Google Scholar 

  128. DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL, Maziarz RT, Hosing C, Früehauf S, Horwitz M, Cooper D, Bridger G, Calandra G, 3102 Investigators. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood. 2009;113(23):5720–6.

    PubMed  CAS  Google Scholar 

  129. Copelan EA, Malik S, Avalos BR. Peripheral blood hematopoietic stem-cell mobilization for autologous transplantation. US Oncol Hematol. 2011;7(1):75–7.

    Google Scholar 

  130. Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens-Harig M, Neben K, Goldschmidt H, Ho AD. Poor mobilization of hematopoietic stem cells-definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant. 2010;16(4):490–9.

    Article  PubMed  CAS  Google Scholar 

  131. Boeve S, Strupeck J, Creech S, Stiff PJ. Analysis of remobilization success in patients undergoing autologous stem cell transplants who fail an initial mobilization: risk factors, cytokine use and cost. Bone Marrow Transplant. 2004;33(10):997–1003.

    Article  PubMed  CAS  Google Scholar 

  132. Gertz MA, Wolf RC, Micallef INM, Gastineau DA. Clinical impact and resource utilization after stem cell mobilization failure in patients with multiple myeloma and lymphoma. Bone Marrow Transplant. 2010;45(9):1396–403.

    Article  PubMed  CAS  Google Scholar 

  133. Bolwell BJ, Pohlman B, Rybicki L, Sobecks R, Dean R, Curtis J, Andresen S, Koo A, Mineff V, Kalaycio M, Sweetenham JW. Patients mobilizing large numbers of CD34+ cells (super mobilizers) have improved survival in autologous stem cell transplantation for lymphoid malignancies. Bone Marrow Transplant. 2007;40:437–41.

    Article  PubMed  CAS  Google Scholar 

  134. Gidron A, Singh V, Egan K, Mehta J. Significance of low peripheral blood CD34+ cell numbers prior to leukopheresis: what should the threshold required for apheresis be? Bone Marrow Transplant. 2008;42:439–42.

    Article  PubMed  CAS  Google Scholar 

  135. Basquiera AL, Abichain P, Damonte JC, Ricchi B, Sturich AG, Palazzo ED, Garcia JJ. The number of CD34+ cells in peripheral blood as a predictor of CD34+ yield in patients going to autologous stem cell transplantation. J Clin Apher. 2006;21:92–5.

    Article  PubMed  CAS  Google Scholar 

  136. Spitzer G, Adkins DR, Spencer V, Dunphy FR, Petruska PJ, Velasquez WS, Bowers CE, Kronmueller N, Niemeyer R, McIntyre W. Randomized study of growth factors post-peripheral-blood-stem-cell transplant: neutrophil recovery is improved with modest clinical benefit. J Clin Oncol. 1994;12:661–70.

    PubMed  CAS  Google Scholar 

  137. Cutler C, Giri S, Jeyapalan S, Paniagua D, Viswanathan A, Antin JH. Acute and chronic graft-versus-host disease after chronic allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J Clin Oncol. 2001;19:3685–91.

    PubMed  CAS  Google Scholar 

  138. Stewart BL, Storer B, Storek J, Deeg HJ, Storb R, Hansen JA, Appelbaum FR, Carpenter PA, Sanders JE, Kiem HP, Nash RA, Petersdorf EW, Moravec C, Morton AJ, Anasetti C, Flowers ME, Martin PJ. Duration of immunosuppressive treatment for chronic graft-versus-host disease. Blood. 2004;104:3501–6.

    Article  PubMed  CAS  Google Scholar 

  139. Ringden O, Labopin M, Gorin NC, Le Blanc K, Rocha V, Gluckman E, Reiffers J, Arcese W, Vossen JM, Jouet JP, Cordonnier C, Frassoni F. Treatment with granulocyte colony-stimulating factor after allogeneic bone marrow transplantation for acute leukemia increases the risk of graft-versus-host disease and death: a study form the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2004;22:416–23.

    Article  PubMed  CAS  Google Scholar 

  140. Miller CB, Jones RJ, Zahurak ML, Piantadosi S, Burns WH, Santos GW, Spivak JL. Impaired erythropoietin response to anemia after bone marrow transplantation. Blood. 1992;80:2677–82.

    PubMed  CAS  Google Scholar 

  141. Link H, Boogaerts MA, Fauser AA, Slavin S, Reiffers J, Gorin NC, Carella AM, Mandelli F, Burdach S, Ferrant A, et al. A controlled trial of recombinant human erythropoietin after bone marrow transplantation. Blood. 1994;84:3327–35.

    PubMed  CAS  Google Scholar 

  142. Baron F, Frere P, Fillet G, Beguin Y. Recombinant human erythropoietin therapy is very effective after an autologous peripheral blood stem cell transplant when started soon after engraftment. Clin Cancer Res. 2003;9:5566–72.

    PubMed  CAS  Google Scholar 

  143. Holig K, Kramer M, Kroschinsky F, Bornhäuser M, Mengling T, Schmidt AH, Rutt C, Ehninger G. Safety and efficacy of hematopoietic stem cell collection from mobilized peripheral blood in unrelated volunteers: 12 years of single-center experience in 3928 donors. Blood. 2009;114:3757–63.

    Article  PubMed  CAS  Google Scholar 

  144. Pulsipher MA, Chitphakdithai P, Miller JP, Logan BR, King RJ, Rizzo JD, Leitman SF, Anderlini P, Haagenson MD, Kurian S, Klein JP, Horowitz MM, Confer DL. Adverse events among 2408 unrelated donors of peripheral blood stem cells: results of a prospective trial from the National Marrow Donor Program. Blood. 2009;113:3604–11.

    Article  PubMed  CAS  Google Scholar 

  145. Lyman GH, Dale DC, Wolff DA, Culakova E, Poniewierski MS, Kuderer NM, Crawford J. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a ­systemic review. J Clin Oncol. 2010;28:2914–24.

    Article  PubMed  Google Scholar 

  146. Kojima S, Ohara A, Tsuchida M, Kudoh T, Hanada R, Okimoto Y, Kaneko T, Takano T, Ikuta K, Tsukimoto I, Japan Childhood Aplastic Anemia Study Group. Risk factors for evolution if acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosuppressive therapy in children. Blood. 2002;100:786–90.

    Article  PubMed  CAS  Google Scholar 

  147. Sloand EM, Yong AS, Ramkissoon S, Solomou E, Bruno TC, Kim S, Fuhrer M, Kajigaya S, Barrett AJ, Young NS. Granulocyte colony-stimulating factor preferentially stimulates proliferation of monosomy 7 cells bearing the isoform IV receptor. Proc Natl Acad Sci USA. 2006;103:14483–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Copelan M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Avalos, B.R., Copelan, E.A. (2013). Hematopoietic Growth Factors in the Supportive Care and Treatment of Patients with Hematologic Neoplasms. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_60

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics