Skip to main content
Log in

Variation of the phase composition and strength characteristics of a tungsten-free hard alloy in the early stage of oxidation

  • Test Methods and Properties of Powder Materials
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The mechanical properties of a tungsten-free cemented carbide subjected to thermal oxidation in air have been found to be fairly dependent on the isothermal holding time. The strength parameters of the material are affected by the oxidation of the materials and the higher Ni content in the metal-binder. That increase is due to the decomposition of the Ni3Mo intermetallic phase during heat treatment of the cemented carbide in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. F. Éikhmans, R. P. Asmolova, and N. I. Litvinyuk, “Cutting properties of tungsten-free hard alloys,” Tverd. Splavy, No. 22, 19–23 (1981).

    Google Scholar 

  2. A. Ya. Muzykant, and V. S. Samoilov, Cutting Tools with Plates of Tungsten-Free Hard Alloys [in Russian], NII Mashinostroeniya, Moscow (1984).

    Google Scholar 

  3. D. B. Gorodetskii, N. N. Sereda, and L. N. Beloborodov, “Finishing of carbon and corrosion-resistant steels with the tungsten-less hard alloy KTS-2M,” Tekhnolog. Sudostr., No. 7, 30 (1986).

    Google Scholar 

  4. G. T. Dzodziev, V. A. Shlyuko, K. K. Palekhov, and R. V. Kantor, “Oxidizability of materials based on TiC and Ti at elevated temperatures,” Poroshk. Metall., No. 4, 76–78 (1988).

    Google Scholar 

  5. V. A. Zhilyaev, “Structural-chemical studies of high-temperature oxidation of some transition metals of groups IV and V with carbon, nitrogen, and oxygen,” Author’s Abstract of Candidate’s Dissertation [in Russian], Sverdlovsk (1974).

  6. R. F. Voitovich, Oxidation of Carbides and Nitrides [in Russian], Nauk. Dumka, Kiev (1981).

    Google Scholar 

  7. V. A. Zhilyaev, V. D. Lyudilov, and G. P. Shveikin, “Mechanism of phase transformations under oxidation of titanium carbide in air,” Izv. Akad. Nauk SSSR. Neorg. Mater.,10, No. 1, 47–51 (1974).

    CAS  Google Scholar 

  8. É. I. Golovko, V. B. Voitovich, N. N. Sereda, and L. N. Beloborodov, “Mechanism of oxidation of a titanium-nickel, molybdenum hard alloy,” Poroshk. Metall., No. 4, 89–94 (1990).

    Google Scholar 

  9. V. B. Voitovich, É. I. Golovko, L. N. Beloborodov, and N. N. Sereda, “Influence of prolonged heating on the distinctive features of oxidation of titanium carbide hard alloy,” Poroshk. Metall., No. 9, 41–46 (1990).

    Google Scholar 

  10. O. V. Bakun, L. N. Beloborodov, O. N. Grigor'ev, et al., “Influence of the medium on the temperature dependence of the strength of the alloy KTS,” Poroshk. Metall., No. 5, 80–83 (1992).

    Google Scholar 

  11. G. V. Samsonov (ed.), Handbook of the Physicochemical Properties of Oxides [in Russian], Metallurgiya, Moscow (1969), pp. 400–407.

    Google Scholar 

  12. M. S. Koval’chenko, N. N. Sereda, and V. T. Bondar’, “Salient features of hard alloys based on titanium carbide,” Poroshk. Metall., No. 11, 98–102 (1985).

    Google Scholar 

  13. F. A. Shunk, Constitution of Binary Alloys, 2nd. Supplement, McGraw, New York (1969).

    Google Scholar 

  14. P. Hull, P. Beardmore, and A. Valintine, “Crack propagation in single crystals of tungsten,” Philos. Mag.,12, No. 119, 1021–1029 (1965).

    Article  CAS  Google Scholar 

Download references

Authors

Additional information

Institute of Metal Physics, Ukrainian Academy of Sciences of Ukraine, Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 11-12, pp. 71–75, November–December, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drachinskii, A.S., Timofeeva, I.I., Rogozinskaya, A.A. et al. Variation of the phase composition and strength characteristics of a tungsten-free hard alloy in the early stage of oxidation. Powder Metall Met Ceram 36, 629–632 (1997). https://doi.org/10.1007/BF02676152

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02676152

Keywords

Navigation