Skip to main content
Log in

Compositional dependence of mechanical and wear properties of electroconductive ceramics

  • First International Seminar on Ceramic Composites with an Organized Macrostructure—Functional Gradient Materials—“LOM-98”
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Some experimental works carried out at the Research Institute for Ceramics Technology (IRTEC) and National Physics Laboratory (NPL) on electroconductive ceramics are reviewed. The tests were mainly devoted to characterize mechanical and wear properties of electroconductive particulate composites based on silicon nitride and alumina matrices with reinforcement of nitrides, carbides, and borides. The focus of the study was to ascertain the influence of the sintering techniques and the amount and quality of particle reinforcement on the mechanical and wear performances of the composites with respect to the matrix. The experimental results indicate that,besides the electroconductivity, some mechanical properties can be greatly enhanced by the introduction of a specific amount of intermetallic particles. Unfortunately, the refractoriness of the starting matrix is at the same time reduced, making the composites more sensitive to the temperature effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Larsen, J. W. Adams, L. R. Johnson, and A. P. S. Teotia,Ceramic Materials for Advanced Eeat Engines, Noyes Publications, Park Ridge (1985).

    Google Scholar 

  2. N. Ichinose,Introduction to Fine Ceramics, John Wiley and Sons Ltd., Chichester (U. K.) (1987).

    Google Scholar 

  3. R. W. Davidge and M. H. Van de Vorde,Design with Structural Ceramics, Elsevier Science Publishers Ltd., Barking (U. K.) (1990).

    Google Scholar 

  4. G. W. Meetham, “High-temperature materials—a general review,”J. Mater. Sci.,26, 853 (1991).

    CAS  Google Scholar 

  5. R. Raj, “Fundamental research in structural ceramics for service near 2000°C,”J. Am. Ceram. Soc.,76, 2147–2174 (1993).

    Article  CAS  Google Scholar 

  6. S. T. Buljan, J. G. Baldoni, and M. L. Huckabee, “Si3N4−SiC composites,”Am. C Ceram. Soc. Bull.,66, 647–652 (1987).

    Google Scholar 

  7. V. Biasini, S. Guicciardi, and A. Bellosi,Refractory Metals and Hard Materials,11, 213 (1992).

    Article  CAS  Google Scholar 

  8. B. Budiansky, J. C. Amazigo, and A. G. Evans, “Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics,”J. Mech. Phys. Solids.,36, 167–187 (1988).

    Article  Google Scholar 

  9. R. Jimbou, K. Takahashi, Y. Matsushita, and T. Kosugi, “SiC−ZrB2 electroconductive ceramic composites,”Adv. Ceram. Mat.,1, 341–345 (1986).

    CAS  Google Scholar 

  10. C. H. McMurtry, W. D. G. Boeker, S. G. Seshadri, et al., “Microstructure and material properties SiC−TiB2 particulate composites,”Am. Ceram. Soc. Bull.,66, 325–329 (1987).

    CAS  Google Scholar 

  11. K. Takahashi and R. Jimbou, “Effect of uniformity on the electrical resistivity of SiC−ZrB2 ceramic composites,”J. Am. Ceram. Soc.,70, C369-C373 (1987).

    Article  CAS  Google Scholar 

  12. C. Martin, P. Mathieu, and B. Cales, “Electrical discharge machinable ceramic composites,”Mater Sci. Eng.,A109, 351–356 (1989).

    Article  Google Scholar 

  13. N. F. Petrofes and A. M. Gadalla, “Electrical discharge machining of advanced ceramics,”Am. Ceram. Soc. Bull.,67, 1048–1052 (1988).

    CAS  Google Scholar 

  14. M. Ramulu, “EDM sinker cutting of a ceramic particulate composite SiC−TiB2,”Adv. Ceram. Mat.,3, 324–327 (1988).

    CAS  Google Scholar 

  15. MCIC report (ed.),Engineering Property Data on Selected Ceramics, Vol. 1, Nitrides, Metals and Ceramics Information Center, Battelle, Columbus, Ohio (1976), pp. 5.3.4-1–5.3.4-9.

    Google Scholar 

  16. MCIC report (ed.),Engineering Property Data on Selected Ceramics, Vol. 2, Carbides, Metals and Ceramics Information Center, Battelle, Columbus, Ohio (1987), pp. 5.2.3-1–5.2.3-26.

    Google Scholar 

  17. A. Bellosi, T. Graziani, S. Guicciardi, and A. Tampieri, “Characteristics of TiB2 ceramics,” in:Proc. Special Ceramics 9 (London, 18–20 December 1990), Institute of Ceramics, Shelton (1990).

    Google Scholar 

  18. “Advanced technical ceramics. Mechanical properties at room temperature”,ENV 843-2 Europ. Standard, Part 2, Determination of elastic moduli (1992).

  19. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation technique for measuring fracture toughness. I. Direct crack measurements,”J. Am. Ceram. Soc.,64, 533–538 (1981).

    Article  CAS  Google Scholar 

  20. A. Bellosi, A. Fiegna, and G. N. Babini, “Electroconductive Si3N4-based composites,” in: G. de With, R. A. Terpstra, and R. Metseelar (eds.),Euro-Ceramics, Elsevier Applied Science Publishers, London, Vol. 3 (1989), pp. 389–393.

    Google Scholar 

  21. A. Bellosi, S. Guicciardi, and A. Tampieri, “Development and characterization of electroconductive Si3N4−TiN composites,”J. Europ. Ceram. Soc.,9, 83–93 (1992).

    Article  CAS  Google Scholar 

  22. A. Bellosi, G. De Portu, and S. Guicciardi, “Preparation and properties of electroconductive Al2O3-based composites,”J. Europ. Ceram. Soc.,10, 307–315 (1992).

    Article  CAS  Google Scholar 

  23. D. J. Magley, R. A. Winholtz, and K. T. Taber, “Residual Stress in a two-phase microcracking ceramic,”J. Am. Ceram. Soc.,73, 1641–1644 (1990).

    Article  CAS  Google Scholar 

  24. C.-W. Nan, “Physics of inhomogeneous inorganic materials,”Prog. Mater. Sci.,37, 1–116 (1993).

    Article  CAS  Google Scholar 

  25. F. C. Cook and G. M. Pharr, “Mechanical properties of ceramics,” in: R. W. Cahn, P. Haansen, and E. J. Kramer (eds.),Materials Science and Technology. A comprehensive treatment “Structure and properties of ceramics,” Vol. 11, Weinheim, Germany (1994).

  26. I. J. McColm,Ceramic Hardness, Plenum Press, New York (1990).

    Google Scholar 

  27. D. J. Green, “Fracture toughness predictions for crack bowing in brittle particulate composites,”J. Am. Ceram. Soc.,66, C4-C5 (1983).

    Article  Google Scholar 

  28. K. T. Faber and A. G. Evans, “Crack deflection process. I. Theory,”Acta Met.,31, 565–576 (1983).

    Article  Google Scholar 

  29. A. G. Evans and K. T. Faber, “Toughening of circmics by circumferential microcracking,”J. Am. Ceram. Soc. 64, 394–398 (1981).

    Article  Google Scholar 

  30. B. Budiansky, J. C. Amazigo, and A. G. Evans, “Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics,”J. Mech. Phys. Solids.,36, 167–187 (1988).

    Article  Google Scholar 

  31. M. Taya S. Hayashi, A. S. Kobayashi, and H. S. Yoon, “Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress,”J. Am. Ceram. Soc.,73, 1382–1391 (1990).

    Article  CAS  Google Scholar 

  32. A. Bellosi, A. Tampieri, and L. Yu-Zhen, “Oxidation behavior of electroconductive Si3N4−TiN composites,”Mater. Sci. Eng.,A127, 115–122 (1990).

    Article  Google Scholar 

  33. C. Melandri, M. Gee, G. De Portu, and S. Guicciardi, “High temperature friction and wear testing of silicon nitride ceramics,”Tribol. Int.,28, 403–413 (1995).

    Article  CAS  Google Scholar 

  34. S. Guicciardi and C. Melandri, “Wear of electroconductive Al2O3-based ceramics,” in:Proceedings of International Workshop on Advanced Ceramics (Inuyama (J), 12–14 March, 1966), National Industrial Research Institute of Nagoya (1966), pp. 117–122.

Download references

Authors

Additional information

Research Institute for Ceramics Technology, National Research Council, Italy. Published in Poroshkovaya Metallurgiya, Nos. 3–4(406), pp. 32–41, March–April, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guicciardi, S. Compositional dependence of mechanical and wear properties of electroconductive ceramics. Powder Metall Met Ceram 38, 140–148 (1999). https://doi.org/10.1007/BF02676039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02676039

Keywords

Navigation