Skip to main content
Log in

Influence of crystallography on aspects of solid-solid nucleation theory

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Expressions for the major variables in the general rate equation for solid-solid nucleation were developed on the basis of various models of the critical nucleus shape during homogeneous and heterogeneous nucleation. These models are based upon spheres, but in some a facet was incorporated at one boundary orientation to represent the presence of a partially or fully coherent structure. Gibbs’ relationship for the critical radius is applicable to all of the models. The other variables in the nucleation rate equation are affected by the model and by faceting. Reduction of AG* by faceting is concluded to be the primary cause for the presence of reproducible lattice orientation relationships and for the existence of transition phases during precipitation from solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Geisler:Phase Transformations in Solids, p. 387, John Wiley, New York, 1951.

    Google Scholar 

  2. J. S. Bowles and C. S. Barrett:Progr. Metal Phys., 1952, vol. 3, p. 1.

    Article  CAS  ADS  Google Scholar 

  3. K. C. Russell:Phase Transformations, p. 219, Amer. Soc. Metals, Metals Park, Ohio, 1970.

    Google Scholar 

  4. H. I. Aaronson and H. B. Aaron:Met. Trans., 1972, vol. 3, p. 2743.

    Article  CAS  Google Scholar 

  5. J. K. Lee and H. I. Aaronson: unpublished research, Michigan Technological Univ., 1973.

  6. J. W. Gibbs:Collected Works, vol. 1, Longmans, Green and Co., New York, 1928.

    MATH  Google Scholar 

  7. P. J. Clemm and J. C. Fisher:Acta Met., 1955, vol. 3, p. 70.

    Article  CAS  Google Scholar 

  8. D.W. Hoffman and J.W. Cahn:Grain Boundaries and Interfaces, p. 368, North-Holland Publ. Co., Amsterdam, 1972.

    Google Scholar 

  9. M. Volmer:Z. Elektrochem, 1929, vol. 35, p. 555.

    CAS  Google Scholar 

  10. K. C. Russell:Acta Met., 1968, vol. 16, p. 761.

    Article  CAS  Google Scholar 

  11. H. I. Aaronson:Decomposition of Austenite by DiffusionalProcesses, p. 387, John Wiley, New York, 1962.

    Google Scholar 

  12. H. I. Aaronson, C. Laird, and K. R. Kinsman:Phase Transformations, p. 313, Amer. Soc. Metals, Metals Park, Ohio, 1970.

    Google Scholar 

  13. L. Tisza and M. I. Manning:Phys. Rev., 1957, vol. 105, p. 1695.

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  14. E. Eichen, H. I. Aaronson, G. M. Pound, and R. Trivedi:Acta Met, 1964, vol. 12, p. 1298.

    Article  CAS  Google Scholar 

  15. C Larid and H. I. Aaronson:ibid., 1967, vol. 15, p. 73.

    Article  Google Scholar 

  16. C. Larid and H. I. Aaronson:Trans. TMS-AIME, 1968, vol. 242, p. 1393.

    Google Scholar 

  17. K. C. Russell:Scr. Met, 1969, vol. 3, p. 313.

    Article  CAS  Google Scholar 

  18. J. D. Eshelby:Proc. Roy. Soc, 1957, vol. A241, p. 376.

    MathSciNet  ADS  Google Scholar 

  19. F. Laszlo:J. Iron Steel Inst, 1950, vol. 164, p. 5.

    Google Scholar 

  20. J. W. Cahn and D. W. Hoffman:Acta Met., 1974, vol. 22, p. 1205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, W.C., White, C.L., Marth, P.E. et al. Influence of crystallography on aspects of solid-solid nucleation theory. Metall Trans A 6, 911–919 (1975). https://doi.org/10.1007/BF02672315

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02672315

Keywords

Navigation