Skip to main content
Log in

Properties of highly conducting nitrogen-plasma-doped ZnSe:N thin films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Values for the acceptor ionization energy, Ea, and compensating donor ionization energy, Ed, have been obtained from an analysis of variable-temperature photoluminescence data taken for a series of highly conducting nitrogen-plasma doped ZnSe thin films. Eawas found to be highly temperature dependent, with values ranging from Ea ~110 meV at low temperatures to ~60 meV at room temperature. The compensating donor ionization energy ranged from Ed ~31 meV at low temperatures to ~24 meVat room temperature. These results provide clear evidence of thenonhydrogenic nature of the nitrogen acceptor state in heavily doped ZnSe:N thin films and suggest that interstitial bonding of N, at two or more stable sites, may play a central role in the p-type doping and compensation of this material at high doping levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ohkawa, T. Karasawa and T. Mitsuyu,J. Cryst. Growth 111,797(1991).

    Article  CAS  Google Scholar 

  2. R.M. Park, M.B. Troffer, CM. Rouleau, J.M. DePuydt and M.A. Haase,Appl. Phys. Lett. 57, 2127 (1990).

    Article  CAS  Google Scholar 

  3. M.A. Haase, J. Qiu, J.M. DePuydt and H. Cheng,Appl. Phys. Lett. 59, 1272 (1991).

    Article  CAS  Google Scholar 

  4. H. Jeon, J. Ding, W. Patterson, A.V. Nurmikko, W. Xie, D.C. Grillo, M. Kobayashi and R.L. Gunshor,Appl. Phys. Lett. 59, 3619(1991).

    Article  CAS  Google Scholar 

  5. S.Y. Wang, I. Kauksson, J. Simpson, H. Stewart, S.J.A. Adams, J.M. Wallace, Y. Kawakami, K.A. Prior and B.C. Cavenett,Appl. Phys. Lett. 61, 506 (1992).

    Article  Google Scholar 

  6. Z. Yu, J. Ren, B. Sneed, K.A. Bowers, K.J. Gossett, C. Boney,Y. Lansari, J.W. Cook, Jr., J.F. Schetzina, G.C. Hua and N. Otsuka,Appl. Phys. Lett. 61, 1266 (1992).

    Article  CAS  Google Scholar 

  7. W. Xie, D.C. Grillo, R.L. Gunshor, M. Kobayashi, G.C. Hua, N. Otsuka, H. Jeon, J. Ding and A.V. Nurmikko,Appl. Phys. Lett. 60, 463 (1992).

    Article  CAS  Google Scholar 

  8. H. Jeon, J. Ding, A.V. Nurmikko, W. Xie, M. Kobayashi and R.L. Gunshor,Appl. Phys. Lett. 60, 892 (1992).

    Article  CAS  Google Scholar 

  9. W. Xie, D.C. Grillo, R.L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A.V. Nurmikko, G.C. Hua and N. Otsuka,Appl. Phys. Lett. 60, 1999 (1992).

    Article  CAS  Google Scholar 

  10. J. Ren, K.A. Bowers, J.W. Cook, Jr. and J.F. Schetzina,J. Vac. Sci. Technol. B 10, 909 (1992).

    Google Scholar 

  11. Y. Lansari, J. Ren, B. Sneed, K.A. Bowers, J.W. Cook, Jr. and J.F. Schetzina,Appl. Phys. Lett. 61, 2554 (1992).

    Article  CAS  Google Scholar 

  12. J. Qiu, J.M. DePuydt, H. Cheng and M.A. Haase,Appl. Phys. Lett. 59, 2992 (1991).

    Article  CAS  Google Scholar 

  13. I.S. Hauksson, J. Simpson, S.Y. Wang, K.A. Prior and B.C. Cavenett,Appl. Phys. Lett. 61, 2208 (1992).

    Article  CAS  Google Scholar 

  14. Ohkawa A. Ueno and T. Mitsuyu,J. Cryst. Growth 117,375 (1992).

    Article  Google Scholar 

  15. D.J. Olego, Intl. Conf. on Solid State Devices and Materials (SSDM ’92), Tsukuba, Japan, 1992.

  16. Z. Yang, K.A. Bowers, J. Ren, Y. Lansari, J.W. Cook, Jr. and J.F. Schetzina,Appl. Phys. Lett. 61, 2671 (1992).

    Article  CAS  Google Scholar 

  17. A bound exciton ionization energy of 24.9 meV was obtained by subtracting the (D°,X) peak energy from the band gap energy E g at 4.2K. The ZnSe band gap at 4.2K was determined from the binding energy of the free exciton (19.9 meV). The free exciton binding energy was obtained by measuring the energy separation of the ground state and first excited state of the free exciton (14.9 meV) in an undoped sample. This equals three quarters of the exciton binding energy, assuming a hydrogenic model applies.

  18. E. Karttheuser, R. Evrard and F. Williams,Phys. Rev. B 21, 648 (1980).

    Google Scholar 

  19. J.I. Pankove, Optical Processes in Semiconductors, (New York: Dover Publication Inc., 1975) p. 27.

    Google Scholar 

  20. N.W. Ashcroft and N.D. Mermin,Solid State Physics, (Philadelphia: Saunders College Press, 1876) pp. 577–580.

    Google Scholar 

  21. G. Burns,Solid State Physics, (Orlando: Academic Press, 1985) pp. 170–173.

    Google Scholar 

  22. E.W. Williams and R. Hall,Luminescence and the Light Emitting Diode, (Oxford: Pergaman Press, 1978) pp. 142–145.

    Google Scholar 

  23. M. Jaros,Deep Levels in Semiconductors, (Bristol, U.K.: Adam Hilger Ltd, 1982) pp. 209–257.

    Google Scholar 

  24. V.l. Fistul,Heavily Doped Semiconductors, (New York: Plenum Press, 1969) pp. 249–280

    Google Scholar 

  25. D.J. Chadi and N. Troullier,Physica B 185,128(1993).

    Article  CAS  Google Scholar 

  26. D.J. Chadi and K.J. Chang,Appl. Phys. Lett. 55, 575 (1989).

    Article  CAS  Google Scholar 

  27. D.J. Chadi,Appl. Phys. Lett. 59, 3589(1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowers, K.A., Yu, Z., Gossett, K.J. et al. Properties of highly conducting nitrogen-plasma-doped ZnSe:N thin films. J. Electron. Mater. 23, 251–254 (1994). https://doi.org/10.1007/BF02670631

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670631

Keywords

Navigation