Skip to main content
Log in

Optical and electrical properties of Sn-doped ZnO thin films studied via spectroscopic ellipsometry and hall effect measurements

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the optical and the electrical properties of Sn-doped ZnO thin films grown via RF co-sputtering deposition methods at room temperature. Through annealing, the carrier concentrations and mobilities were improved. The ellipsometric angles, Ψ and Δ, of the ZnO:Sn thin films were measured via spectroscopic ellipsometry. Dielectric functions were obtained from the ellipsometric angles by using the Drude and the parametric optical constant models. With an increase in the Sn doping concentration, the Drude model amplitude increased substantially. The Urbach and the optical gap energies of the ZnO:Sn films were determined using the dielectric functions. The carrier concentrations and the mobilities of the ZnO:Sn thin films were measured using Hall-effect measurements. The effective mass of ZnO:Sn was estimated to be 0.274m0, assuming that the carrier concentrations measured via ellipsometry and Hall-effect measurements were the same. A shift in the optical gap energy of the Sn-doped ZnO was found to be due to a combination of the Burstein-Moss effect, electron-electron interactions, and electron-impurity scattering. The discrepancy between the measured and the calculated shifts in the optical gap energy is attributed to Sn-alloying effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Rau and M. Schmidt, Thin Solid Films 387, 141 (2001).

    Article  ADS  Google Scholar 

  2. S. T. Shishiyanu, T. S. Shishiyanu and O. I. Lupan, Sens. Act. B 107, 379 (2005).

    Article  Google Scholar 

  3. T. Ootsuka, Z. Liu, M. Osamura, Y. Fukuzawa, R. Kuroda and Y. Suzuki, Thin Solid Films 476, 31 (2005).

    Article  ADS  Google Scholar 

  4. W. M. Kim, J. S. Kim, J. Jeong, J-K. Park et al., Thin Solid Films, 531, 430 (2013), and references therein.

    Article  ADS  Google Scholar 

  5. M. Gabás et al., J. Appl. Phys. 113, 163700 (2013).

    Article  ADS  Google Scholar 

  6. K. Elmer, J. Phys. D 34, 3097 (2001).

    Article  ADS  Google Scholar 

  7. H. Aydin et al., Appl. Surf. Sci. 350, 109 (2015).

    Article  Google Scholar 

  8. S. K. Mishra et al., Sens. Act. A 211, 8 (2014).

    Article  Google Scholar 

  9. M. Ajili, M. Castagne and N. K. Turki, Superlat. Microstruct. 53, 213 (2013).

    Article  ADS  Google Scholar 

  10. N. Chahmat et al., J. Alloy Comp. 593, 148 (2014).

    Article  Google Scholar 

  11. V. Ganesh, I. S. Yahia, S. AlFaify and M. Shkir, J. Phys. Chem. Solids 100, 115 (2017).

    Article  ADS  Google Scholar 

  12. S. Venkataraj, S. Hishita, Y. Adachi, I. Sakaguchi et al., J. Electrochem. Soc. 156, H424 (2009).

    Article  Google Scholar 

  13. H. Sato, T. Minami and S. Takata, J. Vac. Sci. Tech. A 11, 2975 (1993).

    Article  ADS  Google Scholar 

  14. J. L. Lyons, A. Janotti and C. G. van de Walle, Phys. Rev. B 80, 205113 (2009).

    Article  ADS  Google Scholar 

  15. D. S. Bhachu, D. O. Scanlon, G. Sankar, T. D. Veal et al., Chem. Mater. 27, 2788 (2015).

    Article  Google Scholar 

  16. S. Kohiki, M. Nishitani and T. Wada, J. Appl. Phys. 75, 2069 (1994).

    Article  ADS  Google Scholar 

  17. A. Mendoza-Galván, J. Appl. Phys. 99, 014306 (2006).

    Article  ADS  Google Scholar 

  18. C. Tong et al., ACS Appl. Mater. Interfaces 8, 3985 (2016).

    Article  Google Scholar 

  19. T. Minami, H. Nanto and S. Takata, Jpn. J. Appl. Phys. 23, L23 (1984).

    Article  Google Scholar 

  20. C. Agashe et al., J. Appl. Phys. 95, 1911 (2004).

    Article  ADS  Google Scholar 

  21. V. Stevanović, A. Zakutayev and S. Lany, Phys. Rev. A 2, 044005 (2014).

    Article  Google Scholar 

  22. A. Zakutayev, V. Stevanovic and S. Lany, Appl. Phys. Lett. 106, 123903 (2015).

    Article  ADS  Google Scholar 

  23. A. Walsh, J. L. F. Da Silva and S-H. Wei, Phys. Rev. B 78, 075211 (2008).

    Article  ADS  Google Scholar 

  24. K. M. Niang, J. Cho, S. Heffernan, W. I. Milne and A. J. Flewitt, J. Appl. Phys. 120, 085312 (2016).

    Article  ADS  Google Scholar 

  25. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).

    Google Scholar 

  26. Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, 89–1397 (2002).

    Google Scholar 

  27. Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, 13–0311 (2002).

    Google Scholar 

  28. Q. Zhu et al., J. Appl. Phys. 115, 033512 (2014).

    Article  ADS  Google Scholar 

  29. D. E. Proffit, Q. Ma, D. B. Buchholz, R. P. H. Chang et al., J. Amer. Ceramic Soc. 95, 3657 (2012).

    Article  Google Scholar 

  30. Y. Kashiwaba, T. Abe, A. Nakagawa, I. Niikura et al., J. Appl. Phys. 113, 113501 (2013).

    Article  ADS  Google Scholar 

  31. T. D. Kang, Hosun Lee, W-I. Park and G-C. Yi, Thin Solid Films 455/456, 609 (2004).

    Article  Google Scholar 

  32. A. J. de Vries, E. S. Kooij, H. Wormeester et al., J. Appl. Phys. 101, 053703 (2007).

    Article  ADS  Google Scholar 

  33. H. S. So, J-W. Park, D. H. Jung, K. H. Ko et al., J. Appl. Phys. 118, 085303 (2015), and references therein.

    Article  ADS  Google Scholar 

  34. B. Johs et al., Thin Solid Films 313/314, 137 (1998).

    Article  ADS  Google Scholar 

  35. W. Körner, D. F. Urban et al., Phys. Rev. B 90, 195142 (2014), and references therein.

    Article  ADS  Google Scholar 

  36. M. Grundmann, The Physics of Semiconductors, 3rd edition (Springer, New York, 2016).

    Book  Google Scholar 

  37. M. Feneberg, S. Osterburg, K. Lange, C. Lidig et al., Phys. Rev. B 90, 075203 (2014).

    Article  ADS  Google Scholar 

  38. M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn et al., Phys. Rev. B 93, 045203 (2016), and references therein.

    Article  ADS  Google Scholar 

  39. V. Srikant and D. R. Clarke, J. Appl. Phys. 83, 5447 (1998).

    Article  ADS  Google Scholar 

  40. O. Madelung, Semiconductors: Data Handbook, 3rd. ed. (Springer-Verlag, Berlin, 2004).

    Book  Google Scholar 

  41. J. A. Sans, J. F. Sánchez-Royo, A. Segura, G. Tobias and E. Canadell, Phys. Rev. B 79, 195105 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

So, H.S., Hwang, S.B., Jung, D.H. et al. Optical and electrical properties of Sn-doped ZnO thin films studied via spectroscopic ellipsometry and hall effect measurements. Journal of the Korean Physical Society 70, 706–713 (2017). https://doi.org/10.3938/jkps.70.706

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.706

Keywords

Navigation