Skip to main content
Log in

Removal of antimony from copper by injection of soda ash

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The removal of Sb from molten copper is of importance in the development of processes which can smelt copper concentrates directly into copper in a single furnace. A promising method is injection of oxygen and sodium carbonate in a modified anode furnace. This study encompassed a thermodynamic analysis of the impurity removal reactions and an experimental investigation of antimony removal from molten copper in a 15 kW induction furnace. The results showed that the reaction was controlled by diffusion of Sb in the metal phase. The reaction between metal and injected flux can be divided into two subprocesses-. (1) “transitory contact” reaction to the injected flux particles as they rise through the melt and (2) “permanent contact” reaction across the interface between the metal bath and the supernatant slag layer. On the basis of the experimental work, the overall volumetric mass transfer coefficient (cm3/s) at 1473 K was expressed in terms of the two subprocesses as follows:(k d A) ov = (k d A) pc +(k d A) tc = 1.25Q 0.29g + 0.28(H Q f ) whereQ g is the injection gas flow rate in normal liters per minute,H is the depth of injection in centimeters, andQ f the rate of flux injection in grams per second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Harkki, O. Autonen, and T. Tuominen: inExtractive Metallurgy of Copper, Yannopoulos and Agarwal, eds., TMS-AIME, Warrendale, PA, 1976, pp. 488–511.

    Google Scholar 

  2. N.J. Themelis, G.D. Hallett, G.C. McKerrow, and P. Tarassoff ;J. Met., April 1972, pp. 25-32.

  3. INCO staff: inExtractive Metallurgy of Copper, Yannopoulos and Agarwal, eds., TMS-AIME, Warrendale, PA, 1976, pp. 218–37.

    Google Scholar 

  4. W.J. Hillenbrand, R.K. Poull, and H.C. Kenny:Trans. TMS-AIME, 1933, vol. 106, pp. 483–86.

    CAS  Google Scholar 

  5. C.T. Eddy:Trans. TMS-AIME, 1931, vol. 96, pp. 104–17.

    Google Scholar 

  6. P. Taskinen:Scand. J. Metall., 1982, vol. 11, pp. 150–54.

    CAS  Google Scholar 

  7. I. Kojo:in Acta Polytech. Scand., Chem. Technol. Metall. Ser., 1985, Report Ch. 161.

  8. I. Kojo, P. Taskinen, and K. Lilius:Proc. 2nd Int. Symp. on Metallurgical Slags and Fluxes, Fine and Gaskell, eds., TMS/ AIME, Warrendale, PA, 1984, pp. 723–37.

    Google Scholar 

  9. C. Yamauchi, K. Ohtsuki, T. Fujisawa, and H. Sakao:Trans. Jpn. Inst. Met., 1988, vol. 29, pp. 727–34.

    Google Scholar 

  10. C. Yamauchi, K. Ohtsuki, T. Fujisawa, and H. Sakao:Mater. Trans. Jpn. Inst. Met., 1988, vol. 30, pp. 175–83.

    Google Scholar 

  11. G. Riveros, Y. Takeda, and A. Yazawa:Preprint of the Fall Meeting of Mining and Met. Inst. Japan, Sendai, Japan, Oct. 1983, pp. 17-24.

  12. M. Nagamori and P.J. Mackey:Met. Trans. B, 1978, vol. 9B, pp. 567–79.

    CAS  Google Scholar 

  13. T. Nakamura, Y. Ueda, F. Noguchi, and J.M. Toguri:Can. Metall. Q., 1984, vol. 23, pp. 413–19.

    CAS  Google Scholar 

  14. T. Nakamura, F. Noguchi, and Y. Ueda: Paper presented at the 1987 TMS/AIME Annual Meeting, Denver, CO.

  15. J.G. Peacey, G.R. Kubanek, and P. Tarassoff: Noranda Research Center, Pointe Claire, PQ, TMS Paper No. A80-54, 1980.

  16. M.A. Kozlowski and G.A. Irons:Can. Metall. Q., 1990, vol. 29, pp. 51–61.

    CAS  Google Scholar 

  17. K.G. Lombeck, J. Kruger, and H. Winterhager:Metall., 1983, vol. 37 (3), pp. 144–47.

    CAS  Google Scholar 

  18. S. Monden, J. Tanaka, and I. Hisaoka: inAdvances in Sulfide Smelting, Sohn, George, and Zunkel, eds., TMS-AIME, Warrendale, PA, 1983, pp. 901–18.

    Google Scholar 

  19. G.K. Sigworth and J.F. Elliott:Can. Metall. Q., 1974, vol. 13 (3), pp. 455–61.

    Google Scholar 

  20. S. Itoh and T. Azakami:J. Jpn. Inst. Met., 1984, vol. 48 (4), pp. 405–13.

    Google Scholar 

  21. H.H. Kellogg, Y.H. Kim, T.T. Stapurewicz, D. Verdonik, and G. Archer: inPhysical Chemistry of Extractive Metall., Conf. Proc. TMS-AIME, Kurdryk and Rao, eds., Feb. 1985.

  22. R. Schmid:Metall. Trans. B, 1983, vol. 14B, pp. 473–81.

    CAS  Google Scholar 

  23. P. Taskinen: Ph.D. Dissertation, Helsinki University, Helsinki, Finland;Acta Polytech. Scand., 1981, no. 145.

    Google Scholar 

  24. V.S. Lovchikov:Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall., 1969, vol. 12 (4), pp. 38–41.

    CAS  Google Scholar 

  25. S.B. Dougill and J.H.E. Jeffes:Trans. Inst. Min. Metall., March 1980, pp. C37-C41.

  26. O. Kubaschewski and C.B. Alcock:Metallurgical Thermochemistry, 5th ed., Pergamon Press, London, 1979.

    Google Scholar 

  27. P. Taskinen: Helsinki University, Helsinki, Finland, Report TKK-V-B21, 1983.

  28. T.T. Stapurewicz: Doctoral Dissertation, Columbia University, New York, NY, 1989.

    Google Scholar 

  29. T.T. Stapurewicz and N.J. Themelis:Can. Metall. Q., 1987, vol. 26 (2), pp. 123–29.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stapurewicz, T.T., Themelis, N.J. Removal of antimony from copper by injection of soda ash. Metall Trans B 21, 967–975 (1990). https://doi.org/10.1007/BF02670267

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670267

Keywords

Navigation