Skip to main content
Log in

Reduction of lead minerals by CO/CO2 gas mixtures: Application of the grain model

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The grain model is shown to describe satisfactorily the reduction of lead oxide and lead calcium silicate pellets by CO/CO2 gas mixtures. The reduction of lead calcium silicate, the principal lead bearing phase in the feed material to a commercial blast furnace, is initiated at about 750 °C. The activation energy is 161 kJ mol−1. These values are much higher than values for the reduction of lead oxide. The lack of chemical reaction in the upper reaches of the commercial lead blast furnace is attributed to the low reactivity of the feed material. This is a consequence of the low porosity, large particle size of the feed material, and the presence of lead in the form of complex silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

stoichiometric coefficient, Eq. [1]

c 1 ,c 2 :

constants, Eqs. [4] and [5]c tO 1

c o co . c o s :

concentration of carbon monoxide in bulk gas and of unreacted solid

D :

diffusion coefficient

D e :

effective diffusivity

D m :

molecular diffusivity

D k :

Knudsen diffusivity

F p ,F 8 :

pellet and grain shape factor

k :

reaction rate constant

k p :

rate constant related to porosity, Eq. [13]

M :

molecular mass

N th :

Thiele parameter, Eq. [12]

r :

grain radius

R p :

pellet radius or half thickness

R s :

overall rate of reaction per unit surface area, Eq. [11]

S :

surface area

S v :

area per unit volume

t :

time

t*:

dimensionless time = bkSvc CO /Fgc os t

T :

absolute temperature

T m :

fusion temperature

Δw :

weight lossX conversion

ε :

porosity

ε 0 :

initial porosity

σ :

reaction rate modulus, Eq. [2]

τ :

tortuosity

References

  1. J.T. Chao, P.J. Dugdale, D. R. Morris, and F. R. Steward:Metall. Trans. B, 1978, vol. 9B, pp. 293–300.

    CAS  Google Scholar 

  2. D. R. Morris, B. Amero, P. G. Evans, W. Petruk, and D. R. Owens:Metall. Trans. B, 1983, vol. 14B, pp. 617–23.

    CAS  Google Scholar 

  3. J.E. Cowperthwaite, P.J. Dugdale, C.J.F Landry, D.R. Morris, F. R. Steward, and T. C. W. Wilson:Metall. Trans. B, 1980, vol. 11B, pp. 291–99.

    Google Scholar 

  4. M. M. Hussain and D.R. Morris:J. Metals, 1985, vol. 37, No. 8, pp. 57–61.

    CAS  Google Scholar 

  5. D.M. Chizhikov, Y.V. Tsvetkov, and L.G. Berezkina:Kinetika i Kataliz, 1961, vol. 2, pp. 50–54.

    CAS  Google Scholar 

  6. Y. V. Tsvetkov:Kinetika i Kataliz, 1961, vol. 2, pp. 827–29.

    CAS  Google Scholar 

  7. Y.I. Kusaev, D.M. Chizhikov, and Y. V. Tsvetkov:Tsuetnaya Metally, 1968, vol. 41, pp. 69–71.

    Google Scholar 

  8. W. A. Oates and D. D. Todd:J. Australian Inst. Metals, 1962, vol. 7, pp. 109–14.

    CAS  Google Scholar 

  9. D. K. Lambiev and M. S. Kurchatov:Kinetika i Kataliz, 1967, vol. 8, pp. 249–88.

    Google Scholar 

  10. Y. K. Rao and I.J. Lin:Can. Metall. Quart., 1975, vol. 12, pp. 125–30.

    Google Scholar 

  11. P.A. Ramachandran and L.K. Doraiswamy:A.I.Ch.E.J., 1982, vol. 28, pp. 881–900.

    CAS  Google Scholar 

  12. H.Y. Sohn and J. Szekely:Chem. Eng. Sci., 1972, vol. 27, pp. 763–79.

    Article  CAS  Google Scholar 

  13. J. Szekely, C. I. Li, and H. Y. Sohn:Chem. Eng. Sci., 1973, vol. 28, pp. 1975–89.

    Article  CAS  Google Scholar 

  14. J. Szekely, J. W. Evans, and H. Y. Sohn: “Gas-Solid Reactions”, Academic Press, New York, NY, 1976, pp. 115–20.

    Google Scholar 

  15. R. S. Young: “Chemical Analysis in Extractive Metallurgy”, Griffin Co. Ltd., London, 1971, pp. 181–83.

    Google Scholar 

  16. H.M. Rootare and C.F. Prenzlow:J. Phys. Chem., 1967, vol. 71, pp. 2734–36.

    Article  Google Scholar 

  17. R.P. Mayer and R.A Stowe:J. Colloid Sci., 1965, vol. 20, pp. 894–911.

    Article  Google Scholar 

  18. J. Szekely, J. W. Evans, and H. Y. Sohn: “Gas-Solid Reactions”, Academic Press, New York, NY, 1976, pp. 54–56.

    Google Scholar 

  19. P. A. Ramachandran and J. M. Smith:Chemical Engineering Journal, 1977, vol. 14, pp. 137–46.

    Article  CAS  Google Scholar 

  20. L. S. Darken and R.W. Gurry: “Physical Chemistry of Metals”, McGraw-Hill Book Co., New York, NY, 1953, p. 349

    Google Scholar 

  21. A. Paulin and J.B. Mwalula:Advances in Extractive Metallurgy, 1977, Int. Symp., 3rd, pp. 97–103.

  22. R. V. Culver, I. G. Matthew, and E. C. R. Spooner:Australian J. Chem., 1962, vol. 15, pp. 40–55.

    Article  CAS  Google Scholar 

  23. R.B. Evans, G.M. Watson, and E. A. Mason:J. Chem.Phys., 1961, vol. 33, pp. 2076–82.

    Article  Google Scholar 

  24. R. B. Bird, W. E. Stuart, and E. N. Lightfoot:Transport Phenomena, J. Wiley and Sons Inc., New York, NY, 1960, p. 510.

    Google Scholar 

  25. C. N. Satterfield and T. K. Sherwood:The Role of Diffusion in Catalysis, Addison Wesley, Reading, MA, 1963, p. 16.

    Google Scholar 

  26. T. C. M. Pillay and F. D. Richardson:Trans. Inst. Mining and Metall., 1956-57, vol. 66, pp. 309–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, M.M., Morris, D.R. Reduction of lead minerals by CO/CO2 gas mixtures: Application of the grain model. Metall Trans B 17, 575–586 (1986). https://doi.org/10.1007/BF02670225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670225

Keywords

Navigation