Skip to main content
Log in

Impurity-defect interactions and radiation hardening and embrittlement in BCC metals

  • Symposium on Irradiation-Enhanced Materials Science and Engineering
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The interaction of interstitial impurity atoms (IIA’s) with radiation-produced defects in bcc metals and its influence on radiation hardening and embrittlement are reviewed. Special emphasis is placed on the role of oxygen in vanadium and niobium and of nitrogen and carbon in iron and steel. Upon postirradiation annealing at temperatures where the IIA’s are mobile (about 50 °C to 250 °C), resistivity stages and decreases in internal friction (Snoek damping) are observed. Evidence is examined that leads to the conclusion that IIA’s are trapped at radiation-produced defects upon postirradiation annealing,which removes the IIA’s from solid solution. The consequences of this IIA trapping on mechanical properties are summarized, particularly in terms of the phenomena of radiation anneal hardening, static strain aging, and dynamic strain aging (DSA). Static and dynamic strain aging are shown to be retarded or suppressed in irradiated metals. Recent investigations, which demonstrate that the suppression of DSA in steel can lead to an increase in ductility upon irradiation, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. McIlwain, C.W. Chen, R. Bajaj, and M.S. Wechsler: inEffects of Radiation on Substructure and Mechanical Properties of Metals and Alloys, STP 529, ASTM, Philadelphia, PA, 1973 pp. 529–40.

    Google Scholar 

  2. J.H. Perepezko, R.F. Murphy, and A.A. Johnson:Phil. Mag., 1969, vol. 19, pp. 1–6.

    Article  CAS  Google Scholar 

  3. J.T. Stanley, J.M. Williams, W.E. Brundage, and M.S. Wechsler:Acta Metall., 1972, vol. 20, pp. 191–98.

    Article  CAS  Google Scholar 

  4. M.S. Wechsler and R.E. Foster:J. Nucl. Mater., 1979, vol. 83 pp. 160–65.

    Article  CAS  Google Scholar 

  5. R.W. Powers and M.V. Doyle:J. Appl. Phys., 1959, vol 30 pp. 514–24.

    Article  CAS  Google Scholar 

  6. M. Weiler:J. de Phys., 1985, vol. 46, pp. C10–7 to C10-14.

    Google Scholar 

  7. H. Indrawirawan, L.J.H. Brasche, C.V. Owen, D.K. Rehbein, O.N. Carlson, D.T. Peterson, and O. Buck:Phys. Chem. Solids, 1987, vol. 48, pp. 535–39.

    Article  CAS  Google Scholar 

  8. J.H. Perepezko, R.F. Murphy, and A.A. Johnson:Phil. Mag., 1969, vol. 19, pp. 1–6.

    Article  CAS  Google Scholar 

  9. K. Maier, M. Peo, B. Saile, H.E. Schaefer, and A. Seeger:Phil. Mag., 1979, vol. 40, pp. 701–28.

    Article  CAS  Google Scholar 

  10. H.E. Schaefer: inPositron Annihilation, P.G. Coleman, S.C. Sharma, and L.M. Diana, eds., North-Holland Publishing Com- pany, Amsterdam, 1982, pp. 369–80.

    Google Scholar 

  11. D.E. Peacock and A.A. Johnson:Phil. Mag., 1963, vol. 8, pp. 563–77.

    Article  CAS  Google Scholar 

  12. J.M. Williams, W.E. Brundage, and J.T. Stanley:Met. Sci. J., 1968, vol. 2, pp. 100–04.

    Article  CAS  Google Scholar 

  13. M.S. Wechsler, J.M. Williams, and J.T. Stanley:Scripta Metall., 1973, vol. 7, pp. 7–14.

    Article  CAS  Google Scholar 

  14. C.P. Flynn:Phys. Rev., 1968, vol. 171, pp. 682–98.

    Article  CAS  Google Scholar 

  15. H. Schultz:Mater. Sci. Forum, 1987, vol. 15-18, pp. 727–32.

    CAS  Google Scholar 

  16. K.J. Carroll:J. Appl. Phys., 1965, vol. 36, pp. 3689–90.

    Article  CAS  Google Scholar 

  17. W.B. Pearson:A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, London, 1958.

    Google Scholar 

  18. P. Hautojärvi, H. Huomo, M. Puska, and A. Vehanen:Phys. Rev. B, 1985, vol. 32, pp. 4326–31.

    Article  Google Scholar 

  19. P. Hautojärvi:Mater. Sci. Forum, 1987, vol. 15-18, pp. 81–98.

    Article  Google Scholar 

  20. P. Hautojärvi:Hyperfine Interactions, 1983, vol. 15-16, pp. 357–70.

    Article  Google Scholar 

  21. R.W. Siegel: inPositron Annihilation, P.G. Coleman, S.C. Sharma, and L.M. Diana, eds., North-Holland Publishing Com- pany, Amsterdam, 1982, pp. 351–68.

    Google Scholar 

  22. M. Haaf, H.E. Schaefer, and W. Frank: inPositron Annihilation, P.G. Coleman, S.C. Sharma, and L.M. Diana, eds., North-Holland Publishing Company, Amsterdam, 1982, pp. 446–48.

    Google Scholar 

  23. F. Phillipp, B. Saile, and K. Urban: inPoint Defects and Defect Interactions in Metals, North-Holland Publishing Company, Amsterdam, 1982, pp. 261–64.

    Google Scholar 

  24. J.T. Stanley: inDiffusion in Body Centered Cubic Metals, ASM, Metals Park, OH, 1965, pp. 349–56.

    Google Scholar 

  25. H. Wagenblast and A.C. Damask:J. Phys. Chem. Solids, 1962, vol. 23, pp. 221–27.

    Article  CAS  Google Scholar 

  26. M. Weiler and J. Diehl:Scripta Metall., 1976, vol. 10, pp. 101–05.

    Article  Google Scholar 

  27. M. Weiler, J. Diehl, and W. Triftshauser:Solid State Commun., 1975, vol. 17, pp. 1223–26.

    Article  Google Scholar 

  28. T. Takeyama and H. Takahashi:J. Phys. Soc. Jpn., 1975, vol. 38, p. 1783.

    Article  CAS  Google Scholar 

  29. P. Hautojärvi: inPositron Annihilation, P.G. Coleman, S.C. Sharma, and L.M. Diana, eds., North-Holland Publishing Com- pany, Amsterdam, 1982, pp. 389–94.

    Google Scholar 

  30. L. De Schepper, G. Knuyt, L.M. Stals, D. Segers, L. Dorikens- Vanpraet, M. Dorekens, and P. Moser:Mater. Sci. Forum, 1987, vol. 15-18, pp. 131–36.

    Google Scholar 

  31. W. Frank: inPoint Defects and Defect Interactions in Metals, North-Holland Publishing Company, Amsterdam, 1982, pp. 203–08.

    Google Scholar 

  32. T. Tabata, H. Fujita, H. Ishii, K. Igaki, and M. Isshiki:Scripta Metall., 1981, vol. 15, pp. 1317–21.

    Article  CAS  Google Scholar 

  33. M. Kiritani: inPoint Defects and Defect Interactions in Metals, North-Holland Publishing Company, Amsterdam, 1982, pp. 59–79.

    Google Scholar 

  34. J. Verdone, A. Bourret, and P. Moser:Radiat. Eff., 1982, vol. 61, pp. 98–108.

    Google Scholar 

  35. C.H. Woo and W. Frank:Radiat. Eff., 1983, vol.77, pp. 49–55.

    Article  Google Scholar 

  36. K. Kitajima, K. Futagami, and E. Kuramoto:J. Nucl. Mater., 1979, vol. 85-86, pp. 725–29.

    Article  CAS  Google Scholar 

  37. G. Hettich, H. Mehrer, and K. Maier:Scripta Metall., 1977, vol. 11, pp. 795–802.

    Article  CAS  Google Scholar 

  38. S. Takaki, J. Fuss, H. Kugler, U. Dedek, and H. Schultz:Radiat. Eff., 1983, vol. 79, pp. 87–122.

    Article  CAS  Google Scholar 

  39. H.E. Schaefer, K. Maier, M. Weller, D. Herlach, A. Seeger, and J. Diehl:Scripta Metall., 1977, vol. 11, pp. 803–09.

    Article  CAS  Google Scholar 

  40. W. Decker, J. Diehl, A. Dunlop, W. Frank, H. Kronmueller, H. Mensch, H.E. Schaefer, B. Schwendemann, and A. Seeger:Phys. Status Solidi A, 1979, pp. 239-48.

  41. J. Diehl, U. Merbold, and M. Weller:Scripta Metall., 1977, vol. 11, pp. 811–16.

    Article  CAS  Google Scholar 

  42. J.E. McLennan and E.O. Hall:J. Aust. Inst. Met., 1963, vol. 8, pp. 191–96.

    CAS  Google Scholar 

  43. M.J. Makin and F.G. Minter:Acta Metall., 1959, vol. 7, pp. 361–66.

    Article  CAS  Google Scholar 

  44. Z.C. Szkopiac and L.W. Derry:J. Nucl. Mater., 1964, vol. 13, pp. 130–36.

    Article  Google Scholar 

  45. S.M. Ohr, R.P. Tucker, and M.S. Wechsler:Phys. Status Solidi A, 1970, vol. 2, pp. 559–69.

    Article  CAS  Google Scholar 

  46. J. Venetch, A.A. Johnson, and K. Mukherjee:J. Nucl. Mater., 1970, vol. 34, pp. 343–44.

    Article  CAS  Google Scholar 

  47. G.R. Smolik and C.W. Chen:J. Nucl. Mater., 1970, vol. 35, pp. 94–101.

    Article  CAS  Google Scholar 

  48. F.A. Smidt:Radiat. Eff., 1971, vol. 10, pp. 205–14.

    Article  CAS  Google Scholar 

  49. K. Shiraishi, K. Fukaya, and Y. Katano:J. Nucl. Mater., 1972, vol. 44, pp. 228–38.

    Article  CAS  Google Scholar 

  50. M. Eto, K. Fukaya, and K. Shiraishi:J. Nucl. Mater., 1973, vol. 48, pp. 365–68.

    Article  CAS  Google Scholar 

  51. D.F. Hasson: inDefects and Defect Clusters in BCC Metals and Their Alloys, R.J. Arsenault, ed., NBS, Gaithersburg, MD, 1973, pp. 147–63.

    Google Scholar 

  52. M.S. Wechsler, D.G. Alexander, R. Bajaj, and O.N. Carlson: inDefects and Defect Clusters in BCC Metals and Their Alloys, R.J. Arsenault, ed., NBS, Gaithersburg, MD, 1973, pp. 127–46.

    Google Scholar 

  53. K. Shiraishi, K. Fukaya, and Y. Katano:J. Nucl. Mater., 1974, vol. 54, pp. 275–85.

    Article  CAS  Google Scholar 

  54. G.P. Seidel:Radiat. Eff., 1969, vol. 1, pp. 177–90.

    Article  CAS  Google Scholar 

  55. M. Wuttig, J.T. Stanley, and H.K. Birnbaum:Phys. Status Solidi, 1968, vol. 27, pp. 701–12.

    Article  CAS  Google Scholar 

  56. A.C. Damask: inDiffusion in Body Centered Cubic Metals, 1965, ASM, Metals Park, OH, pp. 317–28.

    Google Scholar 

  57. S.M. Ohr, N.E. Hinkle, and M.S. Wechsler: inRadiation Met- allurgy Section, Solid State Division, Progress Report for Period Ending October 1968, Oak Ridge National Laboratory, Oak Ridge, TN, 1969, pp. 29–41.

    Google Scholar 

  58. S.M. Ohr, M.S. Wechsler, C.W. Chen, and N.E. Hinkle: inProc. 2nd Int. Conf. on the Strength of Metals and Alloys, ASM, Metals Park, OH, 1970, vol. II, pp. 742–46.

    Google Scholar 

  59. M.S. Wechsler:J. Eng. Mater. Technol., 1979, vol. 101, pp. 114–21.

    Article  CAS  Google Scholar 

  60. S.A. Bradford and O.N. Carlson:Trans. TMS-AIME, 1962, vol. 224, pp. 738–42.

    CAS  Google Scholar 

  61. M.S. Wechsler and R. Bajaj:Scripta Metall., 1974, vol. 8, pp. 885–88.

    Article  Google Scholar 

  62. K. Veevers and W.B. Rotsey:J. Nucl. Mater., 1968, vol. 108, pp. 108–11.

    Article  Google Scholar 

  63. K. Veevers, W.B. Rotsey, and K.U. Snowden: inApplications- Related Phenomena in Zirconium and Its Alloys, STP 458, ASTM, Philadelphia, PA, 1969, pp. 194–209.

    Google Scholar 

  64. E.A. Little and D.R. Harries:Met. Sci. J., 1970, vol. 4, pp. 188–95.

    CAS  Google Scholar 

  65. E.A. Little and D.R. Harries:Met. Sci. J., 1970, vol.4, pp. 196–200.

    Google Scholar 

  66. K.L. Murty:Mater. Sci. Eng., 1983, vol. 59, pp. 207–15.

    Article  CAS  Google Scholar 

  67. K.L. Murty:J. Met., 1985, vol. 37, pp. 34–39.

    CAS  Google Scholar 

  68. J.S. Blakemore and E.O. Hall:J. Iron Steel Inst., London, 1966, vol. 204, pp. 817–20.

    CAS  Google Scholar 

  69. E.A. Little and D.R. Harries: inIrradiation Effects in Structural Alloys for Thermal and Fast Reactors, STP 457, ASTM, Philadelphia, PA, 1969, pp. 215–41.

    Google Scholar 

  70. E.O. Hall:Yield Point Phenomena in Metals and Alloys, Plenum Press, New York, NY, 1970.

    Google Scholar 

  71. K.L. Murty and E.O. Hall: inIrradiation Effects on the Micro- structure and Properties of Metals, STP 611, ASTM, Philadelphia, PA, 1976, pp. 53–71.

    Google Scholar 

  72. K.L. Murty:Nucl. Technol., 1984, vol. 67, pp. 124–31.

    CAS  Google Scholar 

  73. K.L. Murty:Nature, 1984, vol. 308, pp. 51–52.

    Article  CAS  Google Scholar 

  74. K.L. Murty:Scripta Metall., 1984, vol. 18, pp. 87–89.

    Article  CAS  Google Scholar 

  75. Y.H. Jung and K.L. Murty: inInfluence of Radiation on Material Properties: 13th Int. Symp. (Part 11), STP 956, ASTM, Philadelphia, PA, 1986, pp. 395–407.

    Google Scholar 

  76. K.L. Murty and S.T. Mahmood:Proc. 14th Int. Symp. on the Effects of Radiation on Materials, June 1988, STP 1046, ASTM, Philadelphia, PA, 1990, in press.

  77. E.A. Little: inEffects of Radiation on Materials: 12th Int. Symp., Vol. II, STP 870, ASTM, Philadelphia, PA, 1985, pp. 1009–26.

    Google Scholar 

  78. Y.H. Jung and K.L. Murty: inFracture Mechanics: 19th Symp STP 969, ASTM, Philadelphia, PA, 1988, pp. 392–401.

    Google Scholar 

  79. K.R. Narendrnath, H. Margolin, Y.H. Jung, P.S. Godavarti, and K.L. Murty:Eng. Fract. Mech., 1988, vol. 30, pp. 349–59.

    Article  Google Scholar 

  80. O.S. Oen:Cross Sections for Atomic Displacements in Solids by Fast Electrons, ORNL-4897, Oak Ridge National Laboratory Oak Ridge, TN, 1973.

    Google Scholar 

  81. Standard Practice for Neutron Radiation Damage Simulation by Charged Particle Irradiation, E 521-83, in 1986 Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1986, vol 12 02 pp. 233-58.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Irradiation-Enhanced Materials Science and Engineering” presented as part of the ASM INTERNATIONAL 75th Anniversary celebration at the 1988 World Materials Congress in Chicago, IL, September 25-29, 1988, under the auspices of the Nuclear Materials Committee of TMS-AIME and ASM-MSD.

For the materials discussed in this paper, the displacement cross section for fission neutrons may be estimated as 500 to 1500 barns. Thus, a fluence of 1018 neutrons/cm2 corresponds roughly to 10-3 displacements per atom (DPA). For electron irradiations, the indicated DPA’s are based on the displacement cross sections given by Oen[80] and the threshold displacement energies in the1986 Annual Book of ASTM Standards;[81] i.e., T d = 40 eV for Fe and V and 60 eV for Nb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wechsler, M.S., Murty, K.L. Impurity-defect interactions and radiation hardening and embrittlement in BCC metals. Metall Trans A 20, 2637–2649 (1989). https://doi.org/10.1007/BF02670157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670157

Keywords

Navigation