Skip to main content
Log in

Ion Implantation-Induced Plastic Phenomena in Metallic Alloys

  • Nanostructured Materials in Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ion implantation is widely used for doping semiconductors or electroceramic materials and probing material behaviors in extreme radiation environments. However, implanted ions can induce compressive stresses into the host material, which can induce plasticity and mesoscopic deformation. However, these phenomena have almost exclusively been observed in brittle ionic and/or covalently bonded materials. Here, we present transmission electron microscopy observations of unusual implantation-induced plasticity in two metallic alloys. First, Fe2+ ions induce dislocation plasticity below the implanted layer in a model Fe-P alloy. Next, He+ ions form pressurized cavities which activate the fcc-to-hcp strain-induced martensitic transformation in Alloy 625. In both cases, the plasticity can be explained by a combination of implanted ions being incorporated into the lattice and the creation of irradiation defects. These findings have significant implications for mechanical testing of ion-implanted layers, while also opening pathways for using ion implantation to tune stress distributions in metallic alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

Data will be made available upon request.

References

  1. M.J. Tadjer, J.L. Lyons, N. Nepal, J.A. Freitas, A.D. Koehler, and G.M. Foster, ECS J. Solid State Sci. Technol. 8, Q3187 (2019).

    Article  Google Scholar 

  2. A. Das and D. Basak, ACS Appl. Electron. Mater. 3, 3693 (2021).

    Article  CAS  Google Scholar 

  3. M. Kaur, S. Gautam, and N. Goyal, Mater. Lett. 309, 131356 (2022).

    Article  CAS  Google Scholar 

  4. S.-M. Ma, T.-X. Wang, Z.-Y. Deng, X.-S. Zheng, B.-B. Wang, and H.-J. Feng, Phys. Lett. A 451, 128400 (2022).

    Article  CAS  Google Scholar 

  5. Y. Wang, X. Cheng, K. Zhang, G. Chen, R. Wang, and J. Zhang, Mater Adv 3, 7384 (2022).

    Article  CAS  Google Scholar 

  6. J. P. Wharry, H. (Claire) Xiong, T. Olsen, and C. Yang, in Encyclopedia of Energy Storage (Elsevier, 2022), pp. 243–255.

  7. M.M. Rahman, W.-Y. Chen, L. Mu, Z. Xu, Z. Xiao, M. Li, X.-M. Bai, and F. Lin, Nat. Commun. 11, 4548 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Garoli, L.V. Rodriguez De Marcos, J.I. Larruquert, A.J. Corso, R. Proietti Zaccaria, and M.G. Pelizzo, Appl. Sci. 10, 7538 (2020).

    Article  CAS  Google Scholar 

  9. S. Peracchi, B. James, F. Pagani, V. Pan, J. Vohradsky, D. Bolst, D.A. Prokopovich, S. Guatelli, M. Petasecca, M.L.F. Lerch, S.H. Lee, T. Inaniwa, N. Matsufuji, M. Povoli, A. Kok, M. Jackson, T. Squire, A.B. Rosenfeld, and L.T. Tran, IEEE Trans. Nucl. Sci. 68, 897 (2021).

    Article  ADS  CAS  Google Scholar 

  10. H. Huang, X. Yuan, L. Ma, J. Lin, G. Zhang, and B. Cai, Nucl. Eng. Technol. 55, 2298 (2023).

    Article  CAS  Google Scholar 

  11. M. Naito, S. Kodaira, R. Ogawara, K. Tobita, Y. Someya, T. Kusumoto, H. Kusano, H. Kitamura, M. Koike, Y. Uchihori, M. Yamanaka, R. Mikoshiba, T. Endo, N. Kiyono, Y. Hagiwara, H. Kodama, S. Matsuo, Y. Takami, T. Sato, and S. Orimo, Life Sci. Space Res. (Amst) 26, 69 (2020).

    Article  ADS  PubMed  Google Scholar 

  12. S. Taller, G. VanCoevering, B.D. Wirth, and G.S. Was, Sci. Rep. 11, 2949 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. R.W. Harrison, Vacuum 160, 355 (2019).

    Article  ADS  CAS  Google Scholar 

  14. D. Rafaja, W. Valvoda, A.J. Perry, and J.R. Treglio, Surf. Coat. Technol. 92, 135 (1997).

    Article  CAS  Google Scholar 

  15. T. Wohlenberg and W.A. Grantt, Phase Transitions 1, 23 (1979).

    Article  Google Scholar 

  16. C. A. Volkert, MRS Proc. 157, (1989).

  17. G.W. Arnold, G.B. Krefft, and C.B. Norris, Appl. Phys. Lett. 25, 540 (1974).

    Article  ADS  CAS  Google Scholar 

  18. T. Hioki, A. Itoh, S. Noda, H. Doi, J.-I. Kawamoto, and O. Kamigaito, Nucl. Inst. Methods Phys. Res. B 39, 657 (1989).

    Article  ADS  Google Scholar 

  19. D. Manova, G. Thorwarth, S. Mändl, H. Neumann, B. Stritzker, and B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. B 242, 285 (2006).

    Article  ADS  CAS  Google Scholar 

  20. C. Blawert, B.L. Mordike, Y. Jirásková, and O. Schneeweiss, Surf. Coat. Technol. 116–119, 189 (1999).

    Article  Google Scholar 

  21. S. Mandl and B. Rauschenbach, J. Appl. Phys. 91, 9737 (2002).

    Article  ADS  CAS  Google Scholar 

  22. T. Hioki, A. Itoh, M. Ohkubo, S. Noda, H. Doi, J. Kawamoto, and O. Kamigaito, J. Mater. Sci. 21, 1321 (1986).

    Article  ADS  CAS  Google Scholar 

  23. W. Primak and E. Monahan, J. Appl. Phys. 54, 435 (1983).

    Article  ADS  CAS  Google Scholar 

  24. A. Benyagoub and S. Klaumünzer, Radiat. Eff. Defects Solids 126, 105 (1993).

    Article  ADS  CAS  Google Scholar 

  25. S. Klaumünzer, Radiat. Eff. Defects Solids 110, 79 (1989).

    Article  ADS  Google Scholar 

  26. A. Benyagoub, S. Löffler, M. Rammensee, S. Klaumünzer, and G. Saemann-Ischenko, Nucl. Instrum. Methods Phys. Res. B 65, 228 (1992).

    Article  ADS  Google Scholar 

  27. T. van Dillen, M.J.A. de Dood, J.J. Penninkhof, A. Polman, S. Roorda, and A.M. Vredenberg, Appl. Phys. Lett. 84, 3591 (2004).

    Article  ADS  Google Scholar 

  28. C. Yang, T. Olsen, M.L. Lau, K.A. Smith, K. Hattar, A. Sen, Y. Wu, D. Hou, B. Narayanan, M. Long, J.P. Wharry, and H. Xiong, J. Mater. Res. 37, 1144 (2022).

    Article  ADS  CAS  Google Scholar 

  29. W.J. Arora, H.I. Smith, and G. Barbastathis, Microelectron. Eng. 84, 1454 (2007).

    Article  CAS  Google Scholar 

  30. B.D. Chalifoux, Y. Yao, K.B. Woller, R.K. Heilmann, and M.L. Schattenburg, Opt. Express 27, 11182 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. T.G. Bifano, H.T. Johnson, P. Bierden, and R.K. Mali, J. Microelectromech. Syst. 11, 592 (2002).

    Article  Google Scholar 

  32. T. Motooka and O.W. Holland, Appl. Phys. Lett. 58, 2360 (1991).

    Article  ADS  CAS  Google Scholar 

  33. C. Koroni, T. Olsen, J.P. Wharry, and H. Xiong, Materials 15, 5924 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y.P. Sharkeev, A.N. Didenko, and E.V. Kozlov, Surf. Coat. Technol. 65, 112 (1994).

    Article  CAS  Google Scholar 

  35. Y.P. Sharkeev, E.V. Kozlov, A.N. Didenko, S.N. Kolupaeva, and N.A. Vihor, Surf. Coat. Technol. 83, 15 (1996).

    Article  CAS  Google Scholar 

  36. Y. P. Sharkeev, B. P. Gritsenko, S. V. Fortuna, A. J. Perry, in International Conference on Ion Implantation Technology, IEEE (The Institute of Electrical and Electronics Engineers, Inc, 1998), pp. 873–876.

  37. Y.P. Sharkeev and E.V. Kozlov, Surf. Coat. Technol. 158–159, 219 (2002).

    Article  Google Scholar 

  38. A. Misra, S. Fayeulle, H. Kung, T.E. Mitchell, and M. Nastasi, Nucl. Inst. Methods Phys. Res. B 148, 211 (1999).

    Article  ADS  CAS  Google Scholar 

  39. A. Misra, S. Fayeulle, H. Kung, T.E. Mitchell, and M. Nastasi, Appl. Phys. Lett. 73, 891 (1998).

    Article  ADS  CAS  Google Scholar 

  40. D.J. Bacon, A.F. Calder, and F. Gao, Radiat. Eff. Defects Solids 141, 283 (1997).

    Article  ADS  CAS  Google Scholar 

  41. K. Dahmen, M. Giesen, J. Ikonomov, K. Starbova, and H. Ibach, Thin Solid Films 428, 6 (2003).

    Article  ADS  CAS  Google Scholar 

  42. P.H. Warren, C.D. Clement, C. Yang, A. Sen, W.-Y. Chen, Y. Wu, L. Wang, and J.P. Wharry, J. Nucl. Mater. 583, 154531 (2023).

    Article  CAS  Google Scholar 

  43. C. Clement, Y. Zhao, P. Warren, X. Liu, S. Xue, D.W. Gandy, and J.P. Wharry, J. Nucl. Mater. 558, 153390 (2022).

    Article  CAS  Google Scholar 

  44. D.P. Guillen, J.P. Wharry, G. Housley, C.D. Hale, J. Brookman, and D.W. Gandy, Nucl. Eng. Des. 402, 112114 (2023).

    Article  CAS  Google Scholar 

  45. J.P. Wharry, C.D. Clement, Y. Zhao, K. Baird, D. Frazer, J. Burns, Y. Lu, Y.Q. Wu, C. Knight, D.P. Guillen, and D.W. Gandy, Data Brief 48, 109092 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. C. Clement, S. Panuganti, P.H. Warren, Y. Zhao, Y. Lu, K. Wheeler, D. Frazer, D.P. Guillen, D.W. Gandy, and J.P. Wharry, Mater. Sci. Eng., A 857, 144058 (2022).

    Article  CAS  Google Scholar 

  47. D.P. Guillen, D.C. Pagan, E.M. Getto, and J.P. Wharry, Mater. Sci. Eng., A 738, 380 (2018).

    Article  CAS  Google Scholar 

  48. J.F. Ziegler, The Stopping and Range of Ions in Matter (SRIM), http://www.srim.org/ (2013).

  49. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner, Nucl. Instrum. Methods Phys. Res. B 310, 75 (2013).

    Article  ADS  CAS  Google Scholar 

  50. S. Han, L. Zhao, Q. Jiang, and J. Lian, Sci. Rep. 2, 1 (2012).

    Google Scholar 

  51. F. Walsh, M. Zhang, R.O. Ritchie, A.M. Minor, and M. Asta, Nat. Mater. 22, 926 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. B.H. Savitzky, S.E. Zeltmann, L.A. Hughes, H.G. Brown, S. Zhao, P.M. Pelz, T.C. Pekin, E.S. Barnard, J. Donohue, L. Rangel Da Costa, E. Kennedy, Y. Xie, M.T. Janish, M.M. Schneider, P. Herring, C. Gopal, A. Anapolsky, R. Dhall, K.C. Bustillo, P. Ercius, M.C. Scott, J. Ciston, A.M. Minor, and C. Ophus, Microsc. Microanal. 27, 712 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. C.D. Clement, C. Yang, and J.P. Wharry, Mater. Sci. Eng. A 892, 146029 (2024).

    Article  CAS  Google Scholar 

  54. L. He, T. Yao, K. Bawane, M. Jin, C. Jiang, X. Liu, W. Chen, J.M. Mann, D.H. Hurley, J. Gan, and M. Khafizov, J. Am. Ceram. Soc. 105, 5419 (2022).

    Article  CAS  Google Scholar 

  55. J. Wang, M.B. Toloczko, N. Bailey, F.A. Garner, J. Gigax, and L. Shao, Nucl. Inst. Methods Phys. Res. B 387, 20 (2016).

    Article  ADS  CAS  Google Scholar 

  56. I. Kuryliszyn-Kudelska, J.Z. Domagała, T. Wojtowicz, X. Liu, E. Łusakowska, W. Dobrowolski, and J.K. Furdyna, J. Appl. Phys. 95, 603 (2004).

    Article  ADS  CAS  Google Scholar 

  57. C.W. Tucker and J.B. Sampson, Acta Metall. 2, 433 (1954).

    Article  CAS  Google Scholar 

  58. C. Liu, B. Mensching, K. Volz, and B. Rauschenbach, Appl. Phys. Lett. 71, 2313 (1997).

    Article  ADS  CAS  Google Scholar 

  59. B.H. Sencer, G.S. Was, H. Yuya, Y. Isobe, M. Sagisaka, and F.A. Garner, J. Nucl. Mater. 336, 314 (2005).

    Article  ADS  CAS  Google Scholar 

  60. I.M. Ghauri and N. Afzal, J. Phys. D Appl. Phys. 40, 6044 (2007).

    Article  ADS  CAS  Google Scholar 

  61. E. Snoeks, K.S. Boutros, and J. Barone, Appl. Phys. Lett. 71, 267 (1997).

    Article  ADS  CAS  Google Scholar 

  62. Y.C. Ku, H.I. Smith, and I. Plotnik, J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 6, 2174 (1988).

    Article  ADS  CAS  Google Scholar 

  63. B. Window and G.L. Harding, J. Vacuum Sci. Technol. A Vacuum Surf. Films 11, 1447 (1993).

    Article  ADS  CAS  Google Scholar 

  64. Q. Wang, K. Ozaki, H. Ishikawa, S. Nakano, and H. Ogiso, Nucl. Inst. Methods Phys. Res. B 242, 88 (2006).

    Article  ADS  CAS  Google Scholar 

  65. H. Zhu, J. Davis, and Z. Li, Nucl. Instrum. Methods Phys. Res. B 455, 83 (2019).

    Article  ADS  CAS  Google Scholar 

  66. E. Hasenhuetl, Z. Zhang, K. Yabuuchi, P. Song, and A. Kimura, Nucl. Instrum. Methods Phys. Res. B 397, 11 (2017).

    Article  ADS  CAS  Google Scholar 

  67. C. Lu, K. Jin, L.K. Béland, F. Zhang, T. Yang, L. Qiao, Y. Zhang, H. Bei, H.M. Christen, R.E. Stoller, and L. Wang, Sci. Rep. 6, 19994 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. E. Getto, Z. Jiao, A.M. Monterrosa, K. Sun, and G.S. Was, J. Nucl. Mater. 462, 458 (2015).

    Article  ADS  CAS  Google Scholar 

  69. M.R. Castell, Phys. Rev. B Condens. Matter. Mater. Phys. 68, 1 (2003).

    Article  Google Scholar 

  70. K.S. Mao, C. Sun, C.-H. Shiau, K.H. Yano, P.D. Freyer, A.A. El-Azab, F.A. Garner, A. French, L. Shao, and J.P. Wharry, Scr. Mater. 178, 1 (2020).

    Article  CAS  Google Scholar 

  71. K.S. Mao, A.J. French, X. Liu, Y. Wu, L.A. Giannuzzi, C. Sun, M. Dubey, P.D. Freyer, J.K. Tatman, F.A. Garner, L. Shao, and J.P. Wharry, Mater. Des. 206, 109764 (2021).

    Article  CAS  Google Scholar 

  72. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 2nd edn. (Springer, New York, 2017).

    Book  Google Scholar 

  73. W. Zhang, Y. Xiong, J. Wu, W. Cheng, C. Du, S. Jin, B. Sun, and T. Shen, Nucl. Fusion 62, 126034 (2022).

    Article  ADS  CAS  Google Scholar 

  74. X. Xiao, and L. Yu, Nucl. Mater. Energy 22, 100721 (2020).

    Article  Google Scholar 

  75. G. S. WAS and G. S. Was, Fundamentals of Radiation Materials Science (2017).

  76. A. Debelle and A. Declémy, Nucl. Instrum. Methods Phys. Res. B 268, 1460 (2010).

    Article  ADS  CAS  Google Scholar 

  77. E. A. Clark, R. Yeske, and H. K. Birnbaum, Metall. Trans. A 11, (1980).

  78. K.S. Mao, C. Sun, X. Liu, H.J. Qu, A.J. French, P.D. Freyer, F.A. Garner, L. Shao, and J.P. Wharry, J. Nucl. Mater. 528, 151878 (2020).

    Article  CAS  Google Scholar 

  79. K.S. Mao, C. Sun, Y. Huang, C.-H. Shiau, F.A. Garner, P.D. Freyer, and J.P. Wharry, Materialia (Oxf) 5, 100208 (2019).

    Article  CAS  Google Scholar 

  80. J.P. Wharry and K.S. Mao, J. Mater. Res. 35, 1660 (2020).

    Article  ADS  CAS  Google Scholar 

  81. T. Masumura, K. Fujino, T. Tsuchiyama, S. Takaki, and K. Kimura, ISIJ Int. 61, 546 (2021).

    Article  CAS  Google Scholar 

  82. C. Yang, Y. Pachaury, A. El-Azab, and J. Wharry, Scr. Mater. 209, 114394 (2022).

    Article  CAS  Google Scholar 

  83. P. Hosemann, M. Sebastiani, M.Z. Mughal, X. Huang, A. Scott, and M. Balooch, J. Mater. Res. 36, 2349 (2021).

    Article  ADS  CAS  Google Scholar 

  84. N.W. Phillips, H. Yu, S. Das, D. Yang, K. Mizohata, W. Liu, R. Xu, R.J. Harder, and F. Hofmann, Acta Mater. 195, 219 (2020).

    Article  ADS  CAS  Google Scholar 

  85. C. Heintze, F. Bergner, and M. Hernández-Mayoral, J. Nucl. Mater. 417, 980 (2011).

    Article  ADS  CAS  Google Scholar 

  86. M. Saleh, A. Xu, C. Hurt, M. Ionescu, J. Daniels, P. Munroe, L. Edwards, and D. Bhattacharyya, Int. J. Plast. 112, 242 (2019).

    Article  CAS  Google Scholar 

  87. T. Miura, K. Fujii, K. Fukuya, and K. Takashima, J. Nucl. Mater. 417, 984 (2011).

    Article  ADS  CAS  Google Scholar 

  88. S. Li, Y. Wang, X. Dai, F. Liu, J. Li, and X. Wang, J. Nucl. Mater. 478, 50 (2016).

    Article  ADS  CAS  Google Scholar 

  89. T. Miyazawa, T. Nagasaka, R. Kasada, Y. Hishinuma, T. Muroga, H. Watanabe, T. Yamamoto, S. Nogami, and M. Hatakeyama, J. Nucl. Mater. 455, 440 (2014).

    Article  ADS  CAS  Google Scholar 

  90. P. Hosemann, C. Vieh, R.R. Greco, S. Kabra, J.A. Valdez, M.J. Cappiello, and S.A. Maloy, J. Nucl. Mater. 389, 239 (2009).

    Article  ADS  CAS  Google Scholar 

  91. C.D. Hardie, S.G. Roberts, and A.J. Bushby, J. Nucl. Mater. 462, 391 (2014).

    Article  ADS  Google Scholar 

  92. C. Heintze, F. Bergner, S. Akhmadaliev, and E. Altstadt, J. Nucl. Mater. 472, 1 (2015).

    Google Scholar 

  93. R. Kasada, S. Konishi, K. Yabuuchi, S. Nogami, M. Ando, D. Hamaguchi, and H. Tanigawa, Fusion Eng. Des. 89, 1637 (2014).

    Article  CAS  Google Scholar 

  94. Y. Takayama, R. Kasada, Y. Sakamoto, K. Yabuuchi, A. Kimura, and M. Ando, D. Hamaguchi 442, 23 (2013).

    Google Scholar 

  95. A. Reichardt, A. Lupinacci, D. Frazer, N. Bailey, H. Vo, C. Howard, Z. Jiao, A.M. Minor, P. Chou, and P. Hosemann, J. Nucl. Mater. 486, 323 (2017).

    Article  ADS  CAS  Google Scholar 

  96. H. Vo, A. Reichardt, C. Howard, M.D. Abad, D. Kaoumi, P. Chou, and P. Hosemann, Jom 67, 2959 (2015).

    Article  ADS  CAS  Google Scholar 

  97. T. Ajantiwalay, H. Vo, R. Finkelstein, P. Hosemann, A. Aitkaliyeva, JOM (2019).

  98. Y. Pachaury, G. Warren, J. P. Wharry, A. El-Azab, Int. J. Plast. Submitted (n.d.).

  99. A. Barnoush, P. Hosemann, J. Molina-Aldareguia, and J.M. Wheeler, MRS Bull. 44, 471 (2019).

    Article  ADS  Google Scholar 

  100. N. Bibhanshu, M.N. Gussev, C.P. Massey, and K.G. Field, Mater. Sci. Eng., A 832, 142373 (2022).

    Article  CAS  Google Scholar 

  101. M.A. Haque and M.T.A. Saif, Exp. Mech. 42, 123 (2002).

    Article  CAS  Google Scholar 

  102. D. Kiener, C. Motz, G. Dehm, and R. Pippan, Int. J. Mater. Res. 100, 1074 (2009).

    Article  CAS  Google Scholar 

  103. K.H. Yano, M.J. Swenson, Y. Wu, and J.P. Wharry, J. Nucl. Mater. 483, 107 (2017).

    Article  ADS  CAS  Google Scholar 

  104. K.H. Yano, Y.Q. Wu, and J.P. Wharry, JOM 72, 2065 (2020).

    Article  ADS  CAS  Google Scholar 

  105. H.J. Qu, K.H. Yano, P.V. Patki, M.J. Swenson, and J.P. Wharry, J. Mater. Res. 35, 1037 (2020).

    Article  ADS  CAS  Google Scholar 

  106. J.P. Wharry and K.H. Yano, Microsc. Microanal. 23, 738 (2017).

    Article  ADS  Google Scholar 

  107. P.H. Warren, G. Warren, M. Dubey, J. Burns, Y.Q. Wu, and J.P. Wharry, JOM 72, 2057 (2020).

    Article  ADS  CAS  Google Scholar 

  108. D.C. Bufford, C.M. Barr, B. Wang, K. Hattar, and A. Haque, JOM 71, 3350 (2019).

    Article  CAS  Google Scholar 

  109. C. Chisholm, Quantitative In Situ TEM Studies of Small-Scale Plasticity in Irradiated and Unirradiated Metals (University of California, Berkeley, 2015).

    Google Scholar 

  110. G.S. Jawaharram, P.M. Price, C.M. Barr, K. Hattar, R.S. Averback, and S.J. Dillon, Scr. Mater. 148, 1 (2018).

    Article  CAS  Google Scholar 

  111. D. Kiener, P. Hosemann, S.A. Maloy, and A.M. Minor, Nat. Mater. 10, 608 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. C. Robertson, B.K.K. Panigrahi, S. Balaji, S. Kataria, Y. Serruys, M.-H.H. Mathon, and C.S.S. Sundar, J. Nucl. Mater. 426, 240 (2012).

    Article  ADS  CAS  Google Scholar 

  113. D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, and W.W. Gerberich, Acta Mater. 47, 333 (1998).

    Article  ADS  Google Scholar 

  114. S.H. Chen, L. Liu, and T.C. Wang, Int. J. Solids Struct. 44, 4492 (2007).

    Article  Google Scholar 

  115. C.K. Dolph, D.J. da Silva, M.J. Swenson, and J.P. Wharry, J. Nucl. Mater. 481, 33 (2016).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Yaqiao Wu, Dr. Yu Lu, Megha Dubey, Jeremy Burgener, and the staff at CAES for their assistance with microscopy, specimen handling, and work coordination, and Dr. Rosa Diaz and Dr. Zhongxia Shang at Purdue University for assistance with microscopy. This work was partially supported by the National Science Foundation award DMR-17-52636 and partially supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award DE-SC0020150. P.H.W. and C.D.C. also acknowledge fellowship support from the United States Nuclear Regulatory Commission under grant 31310021M0035. Alloy 625 He implantation experiments and characterization were supported by the US Department of Energy, Office of Nuclear Energy, through the Nuclear Science User Facilities (NSUF) experiment award 22-4415.Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

JC: Investigation, writing- review and editing. CDC: conceptualization, funding acquisition, investigation, formal analysis, writing- original draft, writing- review and editing. CO: investigation, writing- review and editing. YS: formal analysis, writing- review and editing. PW: conceptualization, investigation, data curation, formal analysis, writing- original draft. JPW: conceptualization, funding acquisition, writing- original draft, writing- review and editing. YY: formal analysis, writing- review & editing.

Corresponding author

Correspondence to Janelle P. Wharry.

Ethics declarations

Competing interest

On behalf of all authors, the corresponding authors states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, P.H., Clement, C.D., Sun, Y. et al. Ion Implantation-Induced Plastic Phenomena in Metallic Alloys. JOM (2024). https://doi.org/10.1007/s11837-024-06418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06418-4

Navigation