Skip to main content
Log in

Reaction rate theory perspectives on some problems in materials science

  • Symposium on Irradiation-Enhanced Materials Science and Engineering
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Early applications of rate theory to atomic processes in solids were largely concerned with the postirradiation annealing of native defects or the growth of precipitates from a supersaturated solution. However, the materials problems spawned by the demands of fast reactor and fusion reactor technology necessitated generalizations of the existing formalism to account for the possibilities of both time-dependent point defect production and the simultaneous presence of defect sinks of various distinct types. Ensuing developments led to theories of void swelling and irradiation creep. Attention was also redirected to essentially the same problem area in the fields of physical chemistry and statistical physics. Concomitantly, there arose the realization that many of the concepts emerging from these advances in rate theory were readily adaptable to further topics in materials science. A historical synopsis of these developments is presented, and three examples of the latter topics, specifically, the volume fraction dependence of Ostwald ripening, the internal friction effects arising from the association and dissociation of solutedefect complexes in doped materials, and the effect of catalytic particles upon the response of one type of solid-state gas sensor, are discussed at length. The possible further adaptation of rate theory to some new problem areas is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Holstein:Ann. Phys., 1959, vol. 8, pp. 343–89.

    Article  CAS  Google Scholar 

  2. A.D. Brailsford and T.Y. Chang:J. Chem. Phys., 1970, vol. 53, pp. 3108–13.

    Article  CAS  Google Scholar 

  3. C. Kittel:Quantum Theory of Solids, 1st ed., John Wiley & Sons, Inc., New York, NY, 1963, pp. 326–32.

    Google Scholar 

  4. T.O. Woodruff and H. Ehrenreich:Phys. Rev., 1961, vol. 123, pp. 1553–59.

    Article  Google Scholar 

  5. A.D. Brailsford:Phys. Rev., 1969, vol. 186, pp. 959–61.

    Article  Google Scholar 

  6. A.D. Brailsford:J. Appl. Phys., 1972, vol. 43, pp. 1380–93.

    Article  Google Scholar 

  7. W.A. Gaddard, III and T.C. McGill:J. Vac. Sci. Technol, 1979, vol. 16, pp. 1308–17.

    Article  Google Scholar 

  8. G. Chen and W.A. Goddard, III:Science, 1988, vol. 239, pp. 899–902.

    Article  CAS  Google Scholar 

  9. C. Cawthorne and E.J. Fulton:Nature, 1966, vol. 216, pp. 575–76.

    Article  Google Scholar 

  10. H. Wiedersich:Proc. 2nd Conf. on the Strength of Metals and Alloys, ASM, Cleveland, OH, 1970, vol. 2, pp. 142–52.

    Google Scholar 

  11. S.D. Harkness and Che-Yu Li:Metall. Trans., 1971, vol. 2, pp. 1457–70.

    CAS  Google Scholar 

  12. R. Bullough and R.C. Perrin:Proc. Conf. on Voids Formed by Irradiation of Reactor Materials, Reading, 1971, S.F. Pugh, M.H. Loretto, and D.I.R. Norris, eds., British Nuclear Energy Society, London, 1971, pp. 79–108.

    Google Scholar 

  13. A.D. Brailsford and R. Bullough:J. Nucl. Mater., 1972, vol. 44, pp. 121–35.

    Article  CAS  Google Scholar 

  14. A.D. Brailsford and R. Bullough:J. Nucl. Mater., 1973, vol. 48, pp. 87–106.

    Article  Google Scholar 

  15. C. Herring:J. Appl. Phys., 1950, vol. 21, pp. 437–45.

    Article  Google Scholar 

  16. F.R. Nabarro:Report of a Conference on Strength of Solids, H.H. Wills Laboratory, University of Bristol, July 7-9, 1947, The Physical Society, London, 1948.

    Google Scholar 

  17. A.C. Damask and G.J. Dienes:Point Defects in Metals, 2nd ed., Gordon & Breach Science Publishers, New York, NY, 1971, pp. 77–144.

    Google Scholar 

  18. J.C. Maxwell:A Treatise on Electricity and Magnetism, 3rd ed., Clarendon Press, Oxford, 1892, vol. 1, pp. 440–42.

    Google Scholar 

  19. A.D. Brailsford and R. Bullough:Contemporary Classics in Engineering and Applied Science, A. Thackery, ed., ISI Press, Philadelphia, PA, 1986, p. 41.

    Google Scholar 

  20. A.D. Brailsford and R. Bullough:Phil. Mag., 1973, vol. 27, pp. 49–64.

    Article  CAS  Google Scholar 

  21. R.V. Hesketh:J. Nucl. Mater., 1970, vol. 35, pp. 250–56.

    Article  Google Scholar 

  22. R. Bullough and J.R. Willis:Phil. Mag., 1975, vol. 31, pp. 855–61.

    Article  CAS  Google Scholar 

  23. W.G. Wolfer and M. Ashkin:J. Appl. Phys., 1975, vol. 46, pp. 547–57.

    Article  Google Scholar 

  24. A.D. Brailsford and R. Bullough:Philos. Trans. R. Soc. London, 1981, vol. 302, pp. 87–137.

    Article  Google Scholar 

  25. A.D. Brailsford and R. Bullough:J. Nucl. Mater., 1978, vol. 69-70, pp. 434–50.

    Article  Google Scholar 

  26. L.K. Mansur and M.H. Yoo:J. Nucl. Mater., 1978, vol. 74, pp. 228–41.

    Article  CAS  Google Scholar 

  27. L.K. Mansur:Phil. Mag., 1981, vol. 44, pp. 867–77.

    Article  CAS  Google Scholar 

  28. A.D. Brailsford and L.K. Mansur:J. Nucl. Mater., 1981, vol. 103-104, pp. 1403–08.

    Article  Google Scholar 

  29. L.K. Mansur:Kinetics of Nonhomogeneous Processes, G.R. Freeman, ed., John Wiley & Sons, New York, NY, 1987, pp. 377–402.

    Google Scholar 

  30. A.D. Brailsford and L.K. Mansur:Acta Metall., 1986, vol. 34, pp. 1303–05.

    Article  Google Scholar 

  31. A.D. Brailsford and P. Wynblatt:Acta Metall., 1978, vol. 27, pp. 489–97.

    Google Scholar 

  32. A.S. Nowick:J. Chem. Phys., 1970, vol. 53, pp. 2066–74.

    Article  CAS  Google Scholar 

  33. A.D. Brailsford:J. Appl. Phys., 1986, vol. 59, pp. 399–406.

    Article  CAS  Google Scholar 

  34. A.D. Brailsford and E.M. Logothetis:Sensors and Actuators, 1985, vol. 7, pp. 39–67.

    Article  CAS  Google Scholar 

  35. A.D. Brailsford and K.G. Major:Br. J. Appl. Phys., 1964, vol. 15, pp. 313–19.

    Article  Google Scholar 

  36. A.D. Brailsford:J. Nucl. Mater., 1976, vol. 60, pp. 257–78.

    Article  Google Scholar 

  37. L.L. Foldy:Phys. Rev., 1945, vol. 67, pp. 107–19.

    Article  Google Scholar 

  38. G.K. Batchelor:J. Fluid Mech., 1972, vol. 52, pp. 245–68.

    Article  Google Scholar 

  39. M. Lax:Phys. Rev., 1952, vol. 85, pp. 621–29.

    Article  Google Scholar 

  40. A.D. Brailsford, R. Bullough, and M.R. Hayns:J. Nucl. Mater., 1976, vol. 60, pp. 246–56.

    Article  Google Scholar 

  41. F.S. Ham:J. Phys. Chem. Solids, 1958, vol. 6, pp. 335–51.

    Article  CAS  Google Scholar 

  42. B.U. Felderhof and J.M. Deutch:J. Chem. Phys., 1976, vol. 64, pp. 4551–67.

    Article  CAS  Google Scholar 

  43. M. Muthukumar and R.I. Cukier:J. Stat. Phys., 1981, vol. 26, pp. 453–69.

    Article  Google Scholar 

  44. R.I. Cukier:J. Phys. Chem., 1983, vol. 87, pp. 582–86.

    Article  CAS  Google Scholar 

  45. D.R.S. Talbot and J.R. Willis:Proc. R. Soc. London, 1980, vol. A370, pp. 351–74.

    Google Scholar 

  46. I.D. Howells:J. Fluid Mech., 1974, vol. 64, pp. 449–75.

    Article  Google Scholar 

  47. L.D. Landau and E.M. Lifshitz:Fluid Mechanics, Pergamon Press Ltd., London, 1959, pp. 63–68.

    Google Scholar 

  48. J.R. Willis:J. Mech. Phys. Solids, 1977, vol. 25, pp. 185–202.

    Article  Google Scholar 

  49. C.C. Baker, G.A. Carlson, and R.A. Krakowski:Nucl. Technol. J. Fusion, 1981, vol. 1, pp. 5–78.

    CAS  Google Scholar 

  50. M.J. Monsler, J. Hovinghi, D.L. Cook, T.G. Frank, and G.A. Moses:Nucl. Technol.J Fusion, 1981, vol. 1, pp. 302–58.

    CAS  Google Scholar 

  51. E.P. Simonen, N.M. Ghoniem, and N.H. Packan:J. Nucl. Mater., vol. 122-123, pp. 391–401.

  52. L.K. Mansur, W.A. Coghlan, and A.D. Brailsford:J. Nucl. Mater., 1979, vol. 85-86, pp. 591–95.

    Article  CAS  Google Scholar 

  53. L.K. Mansur, W.A. Coghlan, T.C. Reiley, and W.G. Wolfer:J. Nucl. Mater., 1981, vol. 103-104, pp. 1257–61.

    Article  Google Scholar 

  54. R. Rauh, R. Bullough, and M.H. Wood:Proc. R. Soc. London 1983, vol. A388, pp. 311–33.

    Google Scholar 

  55. A.D. Brailsford and L.K. Mansur:Acta Metall., 1985, vol. 33, pp. 1425–37.

    Article  Google Scholar 

  56. L.K. Mansur, A.D. Brailsford, and W.A. Coghlan:Acta Metall., 1985, vol. 33, pp. 1407–23.

    Article  Google Scholar 

  57. A.D. Brailsford and L.K. Mansur:Acta Metall., 1986, vol. 34, pp. 1303–05.

    Article  Google Scholar 

  58. J.R. Lebenhaft and R. Kapral:J. Stat. Phys., 1979, vol. 20, pp. 25–56.

    Article  Google Scholar 

  59. J. Friedel:Dislocations, 1st ed., Addison-Wesley Publishing Company, Inc., Reading, MA, 1964, pp. 368–76.

    Google Scholar 

  60. P. Wynblatt and N.A. Gjostein:Scripta Metall., 1973, vol. 7, pp. 969–76.

    Article  CAS  Google Scholar 

  61. I.M. Lifshitz and V.V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  62. C. Wagner:Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  63. A.J. Ardell:Acta Metall., 1972, vol. 20, pp. 61–71.

    Article  Google Scholar 

  64. P.W. Voorhees:J. Stat. Phys., 1985, vol. 38, pp. 231–52.

    Article  Google Scholar 

  65. R.N. Stevens: Queen Mary College, London, unpublished re- search, 1988.

  66. C.K.L. Davies, P. Nash, and R.N. Stevens:J. Mater. Sci., 1980, vol. 15, pp. 1521–32.

    Article  CAS  Google Scholar 

  67. C.S. Jayanth and P. Nash: Illinois Institute of Technology, Chicago, IL, unpublished research, 1988.

  68. S.S. Kang and D.N. Yoon:Metall. Trans. A, 1981, vol. 12A, pp. 65–69.

    Google Scholar 

  69. S.S. Kang and D.N. Yoon:Metall. Trans. A, 1982, vol. 13A, pp. 1405–11.

    Google Scholar 

  70. A.S. Nowick and B.S. Berry:Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY, 1972, pp. 156–75.

    Google Scholar 

  71. D.E. Williams and P. McGeehin:Roy. Soc. Chem. Specialist Periodical Reports on Electrochemistry, 1984, vol. 9, pp. 246–90.

    CAS  Google Scholar 

  72. E.M. Logothetis:Ceram. Eng. Sci. Proc, 1980, vol. 1, pp. 281–301.

    Article  CAS  Google Scholar 

  73. R. Aris:The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press, Oxford, 1975, pp. 50–56.

    Google Scholar 

  74. B.G. Streetman:Solid State Electronic Devices, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980, p. 136.

    Google Scholar 

  75. M.W. Roberts and C.S. McKee:Chemistry of the Metal-Gas Interface, Clarendon Press, Oxford, 1978, p. 73.

    Google Scholar 

  76. F.R.N. Nabarro:Theory of Crystal Dislocations, Clarendon Press, Oxford, 1967, p. 180.

    Google Scholar 

  77. M.J. Molina, T. Tso, L.T. Molina, and F.C. Wang:Science, vol. 238, pp. 1253–60.

  78. G.W. Lewthwaite:Phil. Mag., 1982, vol. 46A, pp. 653–59.

    Google Scholar 

  79. A.D. Brailsford:J. Nucl. Mater., 1983, vol. 118, pp. 303–12.

    Article  Google Scholar 

  80. S.M. Murphy:J. Nucl. Mater., 1988, vol. 151, pp. 120–34.

    Article  CAS  Google Scholar 

  81. P.E. Eberly:Zeolite Chemistry and Catalysis, ACS Monograph 171, J.A. Rabo, ed., American Chemical Society, Washington, DC, 1976, p. 392.

    Google Scholar 

  82. J. Emsley and P. Edwards:New Scientist, Apr. 9, 1987, pp. 32-35.

  83. B. Fox:New Scientist, July 21, 1988, p. 27.

  84. V. Norman, T.B. William, A.G. Kallianos, and J.D. Mold:Tobacco Composition, United States Patent No. 3,572,348, Mar. 23, 1971.

  85. J. Raloff:Science News, July 16, 1988, vol. 134, p. 36..

    Google Scholar 

  86. K. Hinode, N. Owada, T. Nishida, and K. Mukai:J. Vac. Sci. Technol., 1987, vol. B5, pp. 518–22.

    Google Scholar 

  87. J.W. McPherson and C.F. Dunn:J. Vac. Sci. Technol., 1987, vol. B5, pp. 1321–25.

    Google Scholar 

  88. C. Li, R.D. Black, and W.R. LaFontaine:Appl. Phys. Lett., 1988, vol. 53, pp. 31–33.

    Article  CAS  Google Scholar 

  89. A.D. Brailsford and H.B. Aaron:J. Appl. Phys., 1969, vol. 40, pp. 1702–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Irradiation-Enhanced Materials Science and Engineering” presented as part of the ASM INTERNATIONAL 75th Anniversary celebration at the 1988 World Materials Congress in Chicago, IL, September 25-29, 1988, under the auspices of the Nuclear Materials Committee of TMS-AIME and ASM-MSD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brailsford, A.D. Reaction rate theory perspectives on some problems in materials science. Metall Trans A 20, 2583–2598 (1989). https://doi.org/10.1007/BF02670152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670152

Keywords

Navigation