Skip to main content
Log in

A practical guide to ligation-mediated PCR footprinting andin-vivo DNA analysis using plant tissues

  • Protocol
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Protein-DNA interactions are important in determining the transcriptional status of chromatin and in determining the tissue-specificity, timing and quantitative levels of transcription. Substantial effort is being directed towards understanding the mechanisms of gene expression in plants, and isolating the components involved, such as transcription factors. Avariety of methods have been applied to the study of interactions between putative transcription factors and gene promoters in plants, but approaches that permit examination of protein-DNA interactions in intact plant tissues offer a more direct examination of these interactions in differentiated plant tissues. Here we describe in detail the method of ligation-mediated PCR forin-vivo footprinting, which can be used to study protein-DNA interactionsin planta with a high degree of precision and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

OP-Cu:

1,10-o-phenanthroline cuprous complex

DMS:

dimethylsulphate

LMPCR:

ligation-mediated PCR

LMWG-1D1:

gene encoding low-molecular-weight glutenin

References

  • Bencini, D.A., G.A. O'Donovan, J.R. Wild. 1984. Rapid chemical degradation sequencing. BioTechniques 2:4–5.

    Google Scholar 

  • Colot, V. 1990.Wheat Prolamin Genes and Bread-Making Quality. Cenetic Engineering, Principles and Methods 12:225–242, ed. Setlow, J.K., Plenum Press, NY & London.

    Google Scholar 

  • Colot, V., D. Bartels, R. Thompson, R. Flavell. 1989. Molecular characterisation of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes. Mol. Gen. Genet. 216:81–90.

    Article  PubMed  CAS  Google Scholar 

  • Ferl, R.J. & H.S. Nick. 1987.In vivo detection of regulatory factor binding sites in the 5′-flanking region of maizeAdh1. J. Biol. Chem. 262:7947–7950.

    PubMed  CAS  Google Scholar 

  • Fors, L., R.A. Saavedra, L. Hood. 1990. Cloning of the sharkPo promoter using a genomic walking technique based on the polymerase chain reaction. Nucl. Acids Res. 18:2793–2799.

    Article  PubMed  CAS  Google Scholar 

  • Garrity, P.A., P.J. Wold. 1992. Effects of different DNA polymerases in ligation-mediated PCR: Enhanced genomic sequencing andin vivo footprinting. Proc. Natl. Acad. Sci. USA 89:1021–1025.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D.S., W.T. Garrard. 1988. Nuclease hypersensitive sites in chromatin. Ann. Rev. Biochem. 57:159–197.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K.E. 1992.Preparation and Analysis of Intracellular Fluids. in Molecular Plant Pathology: A Practical Approach, vol. 2, ed. Gurr, S.J., McPherson, M.J.& Bowles, D.J., IRL press, 15–21.

  • Hammond-Kosack, M.C.U., M.J. Holdsworth, M.W. Bevan. 1993.In vivo footprinting of a low molecular weight glutenin gene LMWG-1D1 in wheat endosperm. EMBO J. 12:545–554.

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack, M.C.U., B. Dobrinski, R. Lurz, K. Docherty, M.W. Kilpatrick. 1992. The human insulin gene linked polymorphic region exhibits an altered DNA structure. Nucl. Acids Res. 20:231–236.

    Article  PubMed  CAS  Google Scholar 

  • Hosta, L., P. Flick. 1991. Enhancement of specificity and yield in PCR. United States Biochemical Corp., Editorial Comments 18(3):1–5.

    Google Scholar 

  • Htun, H., J.E. Dahlberg. 1988. Single strands, triple strands and kinks in H-DNA. Science 241:1791–1796.

    Article  PubMed  CAS  Google Scholar 

  • Kohwi-Shigematsu, T., R. Gelinas, H. Weintraub. 1983. Detection of an altered DNA structure at specific sites in chromatin and supercoiled DNA. Proc. Natl. Acad. Sci. USA 80:4389–4393.

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara, M.D., D.S. Sigman. 1987. Footprinting DNA protein complexesin situ following gel retardation assays using 1, 10 phenanthroline-copper ion:Escherichia coli RNA polymerase-lac promoter complexes. Biochemistry 26:7234–7238.

    Article  PubMed  CAS  Google Scholar 

  • McKendree, W.L., A.-L. Paul, A.J. DeLisle, R.J. Ferl. 1990.In vivo and invitro characterisation of protein interactions with the dyad G-box of theArabidopsis Adh gene. Plant Cell 2:207–214.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, P.R., B. Wold. 1991. Ligation mediated PCR: Applications to genomic footprinting.Methods: A Companion to Methods in Enzymology 2:20–31.

    Article  CAS  Google Scholar 

  • Mueller, P.R., B. Wold. 1989.In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246:780–786.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497.

    Article  CAS  Google Scholar 

  • Rigaud, G., J. Roux, R. Pictet, T. Grange. 1991.In vivo footprinting of rat TAT gene: Dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 67:977–986.

    Article  PubMed  CAS  Google Scholar 

  • Saluz, H.P., J.P. Jost. 1990.A Laboratory Guide for In vivo Studies of DNA Methylation and Protein-DNA Interactions. BioMethods Vol. 3, ed. Azzi, A., Polak, J.M. & Saluz, H.P., Birkhuser Verlag, Basel, Boston, Berlin. pp 35–38.

    Google Scholar 

  • Sambrook, J., E.R. Fritsch, T. Maniatis. 1989.Molecular Cloning: A Laboratory Manual. 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Schulze-Lefert, P., M. Becker-Andr, W. Schulz, K. Hahlbrock, J.L. Dangl. 1989. Functional architecture of the light-responsive chalcone synthase promoter from parsley. Plant Cell 1:707–714.

    Article  PubMed  CAS  Google Scholar 

  • Sen, D., W. Gilbert. 1990. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344:410–414.

    Article  PubMed  CAS  Google Scholar 

  • Tai, T.H., H.D. Tanksley. 1991. A rapid and inexpensive method for the isolation of DNA from dehydrated plant tissue. Plant Mol. Biol. Reptr 8:297–303.

    Article  Google Scholar 

  • Tullius, T.D. 1991. The use of chemical probes to analyse DNA and RNA structures. Curr. Op. Struct. Biol. 1:428–434.

    Article  CAS  Google Scholar 

  • Weintraub, H. 1983. A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin. Cell 32:1191–1203.

    Article  PubMed  CAS  Google Scholar 

  • Wells, R.D., D.A. Collier, J.C. Hanvey, M. Shimizu, F. Wohlrab. 1988. The chemistry and biology of unusual DNA structures adopted by oligopurine-oligopyrimidine sequences. FASEB J. 2:2939–2949.

    PubMed  CAS  Google Scholar 

  • Williamson, J.R., M.K. Raghuraman, T.R. Cech. 1989. Monovalent cation induced structure of telomeric DNA: The G-quartet model. Cell 59:871–880.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammond-Kosack, M.C.U., Bevan, M.W. A practical guide to ligation-mediated PCR footprinting andin-vivo DNA analysis using plant tissues. Plant Mol Biol Rep 11, 249–272 (1993). https://doi.org/10.1007/BF02669852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669852

Key Words

Navigation