Skip to main content
Log in

Dynamic fracture toughness of 4340 VAR steel under conditions of plane strain

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Plate impact experiments are conducted to study the dynamic fracture processes in 4340 VAR steel which occur on submicrosecond timescales. These experiments involve the plane strain loading of a planar crack by a plane tensile pulse with a duration of approximately 1 μs. The loading is achieved by impacting a precracked, disk-shaped specimen by a thin flyer plate. Motion of the rear surface of the specimen, caused by waves diffracted from the stationary crack and by waves emitted from the running crack, is monitored at four points ahead of the crack tip using a laser interferometric system. The measured rear surface motion is compared with the calculated motion using the finite element method to gain understanding of the dynamic fields that occur near the crack tip during crack initiation and propagation. For low temperature experiments, the measured rear surface particle velocity fields are in good agreement with the computed profiles obtained for a constant velocity crack propagation model. For the room temperature experiments, the experimental free surface particle velocityvs time profiles show a sharp spike, with a duration of less than 100 ns at the moment of crack initiation. The spike, which is not predicted by the inverse square root singular stress fields of linear elastic fracture mechanics, is understood to be related to the onset of crack growth. Critical values of the fracture toughness are estimated from the crack initiation times determined both from the velocity time profiles and the elastodynamic modeling of crack advance. The toughness values obtained increase with increasing impact velocity and are as large as 170 MPa√m at the highest impact velocity. Such relatively high values appear to be consistent with the ductile mode of crack initiation observed at all impact velocities used in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Krafft:Appl. Mater. Res., 1964, vol. 3 (2), pp. 88–101.

    Google Scholar 

  2. J. Eftis and J.M. Krafft:J. Bas. Eng., 1965, vol. 87, pp. 257–68.

    Article  Google Scholar 

  3. Kalthoff, J.F., Winkler, S. and Beinert, J.,International Journal of Fracture, vol. 13, pp. 528–531 (1977).

    Google Scholar 

  4. A.J. Rosakis, J. Duffy, and L.B. Freund:J. Mech. Phys. Solids, 1984, vol. 32, pp. 443–60.

    Article  Google Scholar 

  5. T. Kobayashi and J.W. Dally: ASTM STP 711, G.T. Hahn and M.F. Kanninen, eds., ASTM, Philadelphia, PA, 1979, pp. 189-210.

  6. A. Shukla, R. Agrawal, and H. Nigam:Eng. Fract. Mech., 1988, vol. 31, pp. 501–15.

    Article  Google Scholar 

  7. T. Nakamura, CF. Shih, and L.B. Freund:Eng. Fract. Mech., 1986, vol. 25, pp. 323–39.

    Article  Google Scholar 

  8. D.R. Curran, F. Garcia-Benitez, J. Harding, T. Nojima, and C. Ruiz:Towards Development of a New Dynamic Fracture Initiation Test, Technical Report, University of Oxford, Oxford, United Kingdom.

  9. J.P. Klepaczko and A. Solecki:Metall. Trans. A, 1984, vol. 15A, pp. 901–11.

    Article  Google Scholar 

  10. A.J. Rosakis and A.T. Zhender:Int. J. Fract, 1990, vol. 43, pp. 271–85.

    Article  Google Scholar 

  11. S. Krishnaswamy, H.V. Tippur, and A.J. Rosakis:J. Mech. Phys. Solids, 1992, vol. 40, pp. 339–72.

    Article  Google Scholar 

  12. L.S. Costin, J. Duffy, and L.B. Freund: ASTM STP 627, G.T. Hahn and M.F. Kanninen, eds., ASTM, Philadelphia, PA, 1977, pp. 301- 18.

  13. G. Ravichandran and RJ. Clifton:Int. J. Fract, 1989, vol. 40, pp. 157–201.

    Article  Google Scholar 

  14. V. Prakash and R.J. Clifton: ASTM STP 1, H.A. Ernst, A. Saxena, and D.L. Dowell, eds., ASTM, Philadelphia, PA, 1992, pp. 412-44.

  15. A.T. DeHoop: Ph.D. Thesis, Technische Hogesschool, DELFT. Holland, 1958.

    Google Scholar 

  16. L.B. Freund:J. Mech. Phys. Solids, 1973, vol. 21, pp. 47–61.

    Article  Google Scholar 

  17. L.B. Freund:Proc. 10th U.S. Natl. Congress of Theory and Applied Mechanics, Austin, TX, 1986, pp. 13-24.

  18. P. Kumar and R.J. Clifton:J. Appl. Phys., 1977, vol. 48, pp. 1366- 67.

    Article  Google Scholar 

  19. G. Ravichandran: Master’s Thesis, Brown University, Providence, RI, 1983.

    Google Scholar 

  20. M.C. Mello, V. Prakash, and R.J. Clifton:Proc. Am. Phys. Soc. Topical Conf, Williamsburg, VA, 1991, pp. 763-67.

  21. L.M. Barker and R.E. Hollenbach:Rev. Sci. Instrum., 1965, vol. 36 (11), pp. 1617–20.

    Article  Google Scholar 

  22. R.J. Clifton:J. Appl. Mech., 1983, vol. 50, pp. 941–52.

    Article  Google Scholar 

  23. J.D. Achenbach and R. Nuismer:Int. J. Fract., 1971, vol. 7, pp. 77–88.

    Article  Google Scholar 

  24. A. Needlemam and V. Tvergaard:Int. J. Fract, 1991, vol. 49, pp. 41–67.

    Article  Google Scholar 

  25. V. Tvergaard and A. Needleman:Int. J. Fract., 1993, vol. 59, pp. 53–67.

    Article  Google Scholar 

  26. E.H. Lee:J. Appl. Mech., 1969, vol. 36, pp. 1–6.

    Article  Google Scholar 

  27. A. Needleman:Comp. Struct, 1985, vol. 20 (1–3), pp. 247–57.

    Article  Google Scholar 

  28. D. Pierce, CF. Shih, and A. Needleman:Comp. Struct, 1984, vol. 18 (5), pp. 875–87.

    Article  Google Scholar 

  29. G.L. Povirk, S.R. Nutt, and A. Needleman:Proc. TMS Symp. Struct. Mater. Div., Denver, CO, 1993.

  30. G.I. Taylor and H. Quinney:Proc. R. Soc, London, 1934, vol. A143, pp. 307–26.

    Article  Google Scholar 

  31. R.D. Krieg and S.W. Key:Int. J. Numer. Meth. Eng., 1973, vol. 7, pp. 273–86.

    Article  Google Scholar 

  32. T. Bellytschko, R.L. Chiapctta, and H.D. Bartel:Int. J. Numer. Meth. Eng., 1976, vol. 10, pp. 579–96.

    Article  Google Scholar 

  33. V. Tvergaard:J. Mech. Phys. Solids, 1982, vol. 21, pp. 399–425.

    Article  Google Scholar 

  34. J.R. Rice:J. Appl. Mech., 1968, vol. 35, pp. 379–86.

    Article  Google Scholar 

  35. J. Moran and CF. Shih:Int. J. Fract., 1987, vol. 35, pp. 295–310.

    Article  Google Scholar 

  36. V. Prakash, L.B. Freund, and R.J. Clifton:J. Appl. Mech., 1992, vol. 59, pp. 356–65.

    Article  Google Scholar 

  37. L.B. Freund:Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, United Kingdom, 1990.

    Book  Google Scholar 

  38. Y.C. Chi, S.H. Lee, K. Cho, and J. Duffy:Mater. Sci. Eng., 1989, vol. A114, pp. 105–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Dynamic Behavior of Materials,” presented at the 1994 Fall Meeting of TMS/ASM in Rosemont, Illinois, October 3-5, 1994, under the auspices of the TMS-SMD Mechanical Metallurgy Committee and the ASM-MSD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Prakash, V. Dynamic fracture toughness of 4340 VAR steel under conditions of plane strain. Metall Mater Trans A 26, 2527–2543 (1995). https://doi.org/10.1007/BF02669411

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669411

Keywords

Navigation