Skip to main content
Log in

An analysis of dynamic, ductile crack growth in a double edge cracked specimen

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Dynamic crack growth is analysed numerically for a plane strain double edge cracked specimen subject to symmetric impulsive tensile loading at the two ends. The material behavior is described in terms of an elastic-viscoplastic constitutive model that accounts for ductile fracture by the nucleation and subsequent growth of voids to coalescence. Two populations of second phase particles are represented, including large inclusions or inclusion colonies with low strength, which result in large voids near the crack tip at an early stage, and small second phase particles, which require large strains before cavities nucleate. The crack growth velocities determined here are entirely based on the ductile failure predictions of the material model, and thus the present study is free from ad hoc assumptions regarding appropriate dynamic crack growth criteria. Adiabatic heating due to plastic dissipation and the resulting thermal softening are accounted for in the analyses. Different prescribed impact velocities, inclusion spacings and values of the inclusion nucleation stress are considered. Predictions for the dynamic crack growth behavior and for the time variation of crack tip characterizing parameters are obtained for each case analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.B. Broberg, in Recent Progress in Applied Mechanics, K.B. Broberg, J. Hult and F. Niordson (eds.), Wiley, New York (1967) 125–151.

    Google Scholar 

  2. L.B. Freund, Journal of the Mechanics and Physics of Solids 20 (1972) 129–140.

    Google Scholar 

  3. B. Brickstad and F. Nilsson, International Journal of Fracture 16 (1980) 71–84.

    Google Scholar 

  4. J.F. Kalthoff, International Journal of Fracture 27 (1985) 277–298.

    Google Scholar 

  5. J. Ahmad, J. Jung, C.R. Barnes and M.F. Kanninen, Engineering Fracture Mechanics 17 (1983) 235–246.

    Google Scholar 

  6. R. Hoff, C.A. Rubin and G.T. Hahn, Engineering Fracture Mechanics 26 (1987) 445–461.

    Google Scholar 

  7. L.B. Freund and Y.J. Lee, International Journal of Fracture 42 (1990) 261–276.

    Google Scholar 

  8. S. Aoki, K. Kishimoto, A. Takeya and M. Sakata, International Journal of Fracture 28 (1984) 267–278.

    Google Scholar 

  9. N. Aravas and R.M. McMeeking, International Journal of Fracture 29 (1985) 21–38.

    Google Scholar 

  10. A. Needleman and V. Tvergaard, Journal of the Mechanics and Physics of Solids 35 (1987) 151–183.

    Google Scholar 

  11. R. Becker, A. Needleman, S. Suresh, V. Tvergaard, and A.K. Vasudevan, Acta Metallurgica 37 (1989) 99–120.

    Google Scholar 

  12. V. Tvergaard and A. Needleman, Journal of the Mechanics and Physics of Solids 34 (1986) 213–241.

    Google Scholar 

  13. V. Tvergaard and A. Needleman, International Journal of Fracture 37 (1988) 197–215.

    Google Scholar 

  14. A.L. Gurson, Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth and Interaction, Ph.D thesis, Brown University (1975).

  15. A.L. Gurson, Journal of Engineering Materials and Technology 99 (1977) 2–15.

    Google Scholar 

  16. J. Pan, M. Saje and A. Needleman, International Journal of Fracture 21 (1983) 261–278.

    Google Scholar 

  17. V. Tvergaard, International Journal of Fracture 17 (1981) 389–407.

    Google Scholar 

  18. V. Tvergaard, International Journal of Fracture 18 (1982) 237–252.

    Google Scholar 

  19. V. Tvergaard and A. Needleman, Acta Metallurgica 32 (1984) 157–169.

    Google Scholar 

  20. C.C. Chu and A. Needleman, Journal of Engineering Materials and Technology 102 (1980) 249–256.

    Google Scholar 

  21. G.I. Taylor and H. Quinney, Proceedings of the Royal Society of London A143 (1934) 307–326.

    Google Scholar 

  22. T. Nakamura, C.F. Shih and L.B. Freund, International Journal of Fracture 27 (1985) 229–243.

    Google Scholar 

  23. C.F. Shih, B. Moran and T. Nakamura, International Journal of Fracture 30 (1986) 79–102.

    Google Scholar 

  24. B. Moran and C.F. Shih, Engineering Fracture Mechanics 27 (1987) 615–642.

    Google Scholar 

  25. B. Moran and C.F. Shih, International Journal of Fracture 35 (1987) 295–310.

    Google Scholar 

  26. T. Belytschko, R.L. Chiapetta and H.D. Bartel, International Journal for Numerical Methods in Engineering 10 (1976) 579–596.

    Google Scholar 

  27. R.D. Krieg and S.W. Key, International Journal for Numerical Methods in Engineering 7 (1973) 273–286.

    Google Scholar 

  28. D. Peirce, C.F. Shih and A. Needleman, Computers and Structures 18 (1984) 875–887.

    Google Scholar 

  29. V. Tvergaard, Journal of the Mechanics and Physics of Solids 30 (1982) 399–425.

    Google Scholar 

  30. J.R. Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  31. J. Koplik and A. Needleman, International Journal of Solids and Structures 24 (1988) 835–853.

    Google Scholar 

  32. R. Becker, A. Needleman, O. Richmond and V. Tvergaard, Journal of the Mechanics and Physics of Solids 36 (1988) 317–351.

    Google Scholar 

  33. J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 13–31.

    Google Scholar 

  34. J.R. Rice and G.F. Rosengren, Journal of the Mechanics and Physics of Solids 16 (1968) 1–12.

    Google Scholar 

  35. K. Cho, J.P. Skelnak and J. Duffy, in Fracture Mechanics: Twenty-First Symposium, ASTM STP 1074, (J.P. Gudas, J.A. Joyce and E.M. Hackett (eds.)), American Society for Testing and Materials, Philadelphia, in press.

  36. R.M. McMeeking, Journal of the Mechanics and Physics of Solids 25 (1977) 357–381.

    Google Scholar 

  37. C.F. Shih, Journal of the Mechanics and Physics of Solids 29 (1981) 305–326.

    Google Scholar 

  38. T. Nakamura, C.F. Shih and L.B. Freund, Engineering Fracture Mechanics 22 (1985) 437–452.

    Google Scholar 

  39. L.S. Costin, J. Duffy and L.B. Freund, in Fast Fracture and Crack Arrest, ASTM STP 627, G.T. Hahn and M.F. Kanninen (eds.), American Society for Testing and Materials, Philadelphia (1977) 301–318.

    Google Scholar 

  40. R.W. Klopp, R.J. Clifton and T.G. Shawki, Mechanics of Materials 4 (1985) 375–385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Needleman, A., Tvergaard, V. An analysis of dynamic, ductile crack growth in a double edge cracked specimen. Int J Fract 49, 41–67 (1991). https://doi.org/10.1007/BF00013502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013502

Keywords

Navigation