Skip to main content
Log in

Densification behavior of dynamically shock compacted AI2O3/ZrO2 powders synthesized through rapid solidification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The rapidly solidified alumina-zirconia eutectic contains high volume fractions of nanocrystallinet- ZrO2, which makes the material a promising precursor for the manufacturer of fracture-resistant ceramic specimens. Unfortunately, conventional powder processing and sintering techniques are inadequate for the fabrication of dense specimens using this material. We have used dynamic shock compaction to facilitate the achievement of high density specimens which retain the unique microstructure of the precursor material. In an attempt to quantify the dynamics of the microstructural evolution which occurs during the compaction process, we have investigated the effect of various particle size distributions on the densification behavior of the material during the shock compaction and postcompaction sintering cycles. The shock compaction process produced high densities (∼73 to 78 pct of single-crystal theoretical) by inducing a highly efficient packing of the particles. A bimodal powder distribution was also compacted and this specimen exhibited a relative density of 86.2 pct, approximately 10 pct higher that those of the unimodal compositions. In this compact, the small particles efficiently filled the interstices between the larger particles. The high density of the bimodal compact did not translate to a high sintered density, however.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Green, R.H.J. Hannink, and M.V. Swain:Transformation Toughening of Ceramics, CRC Press, Boca Raton, FL, 1989.

    Google Scholar 

  2. A.G. Evans and R.M. Cannon:Acta Metall, 1986, vol. 34 (5), pp. 761–800.

    Article  Google Scholar 

  3. R.W. Steinbrech:J. Eur. Ceram. Soc, 1992, vol. 10, pp. 131–42.

    Article  Google Scholar 

  4. P.F. Becher:Acta Metall, 1986, vol. 34 (10), pp. 1885–91.

    Article  Google Scholar 

  5. M. Rühle, A.G. Evans, R.M. McMeeking, P.G. Charalambides, and J.W. Hutchinson:Acta Metall, 1987, vol. 35 (11), pp. 2701–10.

    Article  Google Scholar 

  6. A.H. Heuer, M.J. Ready, and R.W. Steinbrech:Mater. Sci. Eng. A, 1988, vols. 105–106, pp. 83–89.

    Article  Google Scholar 

  7. N. Claussen, R.L. Cox, and J.S. Wallace:J. Am. Ceram. Soc. 1982, vol. 65, pp. C-190-C-191.

    Google Scholar 

  8. I.J. McColm:Ceramic Hardness, Plenum Press, New York, NY, 1990, pp. 260–76.

    Book  Google Scholar 

  9. A.H. Heuer and M. Ruhle:Science and Technology of Zirconia II, vol. 12,Advances in Ceramics, American Ceramic Society, Columbus, OH, 1989, pp. 1–13.

    Google Scholar 

  10. N. Claussen:J. Am. Ceram. Soc, 1976, vol. 59 (1), pp. 49–51.

    Article  Google Scholar 

  11. R.C. Garvie and M.V. Swain:J. Mater. Sci., 1985, vol. 20, pp. 1193–1200.

    Article  Google Scholar 

  12. R.L. Coble:J. Appl. Phys., 1961, vol. 32 (5), pp. 787–92.

    Article  Google Scholar 

  13. F.F. Lange:J. Phys. Cl, 1986, vol. 47, pp. 205–17.

    Google Scholar 

  14. W.J. Nellis:Shock Compaction of Solids, A Tutorial, UCRL-JC- 103176, 1990.

  15. O.R. Bergmann and J.A. Barrington:J. Am. Ceram. Soc, 1966, vol. 49, pp. 502–07.

    Article  Google Scholar 

  16. D.J. Benson, W.J. Nellis, and J.A. Moriarity:Shock-Wave and High- Strain-Rate Phenomena in Materials, Marcel Dekker, New York, NY, 1992, pp. 981–87.

    Google Scholar 

  17. B. Morosin, R.A. Graham, and J.R. Hellman:Shock Waves in Condensed Matter—I983, Elsevier, Amsterdam, 1984, pp. 383–86.

    Google Scholar 

  18. E.K. Beauchamp, M.J. Carr, and R.A. Graham:J. Am. Ceram. Soc, 1985, vol. 68, pp. 696–99.

    Article  Google Scholar 

  19. R.A. Prummer and G. Ziegler:Powder Metall. Int., 1977, vol. 9, pp. 11–14.

    Google Scholar 

  20. M.A. Meyers and S.L. Wang:Acta Metall, 1988, vol. 36, pp. 925–36.

    Article  Google Scholar 

  21. W.H. Gourdin:Mater Res. Soc. Symp. Proc, North-Holland, New York, 1984, vol. 24, pp. 307-18.

  22. J. McKittrick, B. Tunaboylu, and J. Katz:J. Mater. Sci., 1994, vol. 29, pp. 2119–25.

    Article  Google Scholar 

  23. B. Tunaboylu, J. McKittrick, W.J. Nellis, and S.R. Nutt:J. Am. Ceram. Soc, 1994, vol. 77 (6), pp. 1605–12.

    Article  Google Scholar 

  24. R.M. German:Particle Packing Characteristics, Metal Powder Industries Federation, Princeton, NJ, 1989, pp. 135–80.

    Google Scholar 

  25. R.M. German:Metall. Trans. A, 1992, vol. 23A, pp. 1455–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Dynamic Behavior of Materials,” presented at the 1994 Fall Meeting of TMS/ASM in Rosemont, Illinois, October 3-5, 1994, under the auspices of the TMS-SMD Mechanical Metallurgy Committee and the ASM-MSD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freim, J., McKittrick, J. & Nellis, W.J. Densification behavior of dynamically shock compacted AI2O3/ZrO2 powders synthesized through rapid solidification. Metall Mater Trans A 26, 2503–2509 (1995). https://doi.org/10.1007/BF02669408

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669408

Keywords

Navigation