Skip to main content
Log in

High-strain, high-strain-rate behavior of tantalum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tantalum plate produced by a forging-rolling sequence was subjected to high plastic shear strains(γ = 1 → 5.5) at high strain rates (∼4 × 104 s-1) in two experimental configurations: (a) a special hat-shaped geometry and (b) thin disks deformed in a split Hopkinson bar. In parallel experiments, the constitutive behavior of the same material was established through quasi-static and dynamic compression tests at ambient and elevated temperatures. The microstructure generated at high strain rates and retained by rapid cooling from a narrow (200-μm) deformation band progresses from dislocated, to elongated cells, to banded structures, and finally, to subgrains as the shear strain increases from 0 to 5.5. The temperature rise predictions from the constitutive description of the material indicate that the temperature reaches values of 800 K, and it is proposed that thermal energy is sufficient to produce a significant reorganization of the deformation substructure, leading to a recovered structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Armstrong, V. Ramachandran, and F.J. Zerilli: inAdvances in Materials and Their Applications, P. Rama Rao, ed., Wiley Eastern Ltd., New Delhi, 1988, p. 201.

    Google Scholar 

  2. A. Seeger:Phil. Mag., 1956, vol. 1, pp. 651–62.

    Article  Google Scholar 

  3. J.E. Dorn and S. Rajnak:Trans. AIME, 1964, vol. 230, pp. 1052–64.

    Google Scholar 

  4. L.A. Gypen and A. Deruyttere:J. Less-Common Met., 1982, vol. 86, pp. 219–40.

    Article  Google Scholar 

  5. M. Werner:Phys. Status Solidi, 1987, vol. 104, pp. 63–78.

    Article  Google Scholar 

  6. H. Koizumi, H.O.K. Kirchner, and T. Suzuki:Ada Metall. Mater., 1993, vol. 41, pp. 3483–93.

    Article  Google Scholar 

  7. F.J. Zerilli and R.W. Armstrong:J. Appl. Phys., 1986, vol. 61, pp. 1816–25.

    Article  Google Scholar 

  8. F.J. Zerilli and R.W. Armstrong:J. Appl. Phys., 1990, vol. 68, pp. 1580–91.

    Article  Google Scholar 

  9. J.H. Bechtold:Acta Metall, 1955, vol. 3, pp. 249–54.

    Article  Google Scholar 

  10. A. Gilbert, D. Hull, W.S. Owen, and C.N. Reid:J. Less-Common Met, 1962, vol. 4, pp. 399–408.

    Article  Google Scholar 

  11. T.E. Mitchell and W.A. Spitzig:Acta Metall, 1965, vol. 13, pp. 1169–79.

    Article  Google Scholar 

  12. B.L. Mordike and G. Rudolf:J. Mater. Sci, 1967, vol. 2, pp. 332–38.

    Article  Google Scholar 

  13. K.G. Hoge and A.K. Mukherjee:J. Mater. Sci., 1977, vol. 12, pp. 1666–72.

    Article  Google Scholar 

  14. D. Lassila and G.T. Gray III:J. Phys., Colloq., 1991, vol. 1, pp. 19–26.

    Google Scholar 

  15. A.C. Gurevitch, L.E. Murr, H.K. Shih, C.-S. Niou, A.H. Advani, D. Manuel, and L. Zernow:Mater. Charact, 1993, vol. 30, pp. 201–16.

    Article  Google Scholar 

  16. H.K. Shih, L.E. Murr, C.-S. Niou, and L. Zernow:Scripta. Metall. Mater., 1993, vol. 29, pp. 1291–96.

    Article  Google Scholar 

  17. L.E. Murr, H.K. Shih, and C.-S. Niou:Mater. Charact, 1994, vol. 33, pp. 65–74.

    Article  Google Scholar 

  18. C. Feng and P. Kumar:J. Met., 1989, vol. 41, pp. 40–45.

    Google Scholar 

  19. J.B. Clark, R.K. Garrett, Jr., T.L. Jungling, R.A. Vandermeer, and C.L. Vold:Metall. Trans. A, 1991, vol. 22A, pp. 2039–48.

    Article  Google Scholar 

  20. J.B. Clark, R.K. Garrett, T.L. Jungling, and R.I. Asfahani:Metall. Trans. A, 1992, vol. 23A, pp. 2183–91.

    Article  Google Scholar 

  21. L.W. Meyer and S. Manwaring: inMetallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel Dekker, New York, NY, 1986, p. 657.

    Google Scholar 

  22. M.A. Meyers, G. Subhash, B.K. Kad, and L. Prasad:Mech. Mater., 1994, vol. 17, pp. 175–99.

    Article  Google Scholar 

  23. U.R. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi:Acta Metall. Mater., 1994, vol. 42, pp. 3183–95.

    Article  Google Scholar 

  24. M.A. Meyers, U.R. Andrade, and A.H. Chokshi:Metall. Mater. Trans., in press.

  25. S. Nemat-Nasser, J.B. Isaacs, and J.E. Starrett:Proc. R. Soc. London A, 1991, vol. A20, pp. 371–91.

    Article  Google Scholar 

  26. S. Nemat-Nasser, Y.-F. Li, and J.B. Isaacs:Mech. Mater., 1994, vol. 17, pp. 111–34.

    Article  Google Scholar 

  27. G.R. Johnson and W.H. Cook: inProc. 7th Int. Symp. on Ballistics, The Hague, The Netherlands, 1983, pp. 1–7.

    Google Scholar 

  28. G.R. Johnson and T.J. Holmquist:J. Appl. Phys., 1988, vol. 64, pp. 3901–10.

    Article  Google Scholar 

  29. C.L. Wittman, CM. Lopatin, J.P. Swensen, and T.J. Holmquist: inHigh Strain Rate Behavior of Refractory Metals and Alloys, R. Asfahani, E. Chen, and A. Crowson, eds., TMS-AIME, Warrendale, PA, 1992, pp. 167–78.

    Google Scholar 

  30. T.W. Wright:J. Mech. Phys. Solids, 1990, vol. 38, pp. 515–30.

    Article  Google Scholar 

  31. T.W. Wright:Mech. Mater., 1994, vol. 17, pp. 215–22.

    Article  Google Scholar 

  32. R.E. Reed-Hill:Physical Metallurgy Principles, 2nd ed., PWS Engineering, Boston, MA, 1973, pp. 284–90.

    Google Scholar 

  33. W. Köck and P. Paschen:J Met, 1989, vol. 41 (10), pp. 33–39.

    Google Scholar 

  34. D. Beckenhauer, P. Niessen, and P. Pick:J. Mater. Sci. Lett, 1993, vol. 12, pp. 449–50.

    Article  Google Scholar 

  35. L.E. Murr, C.-S. Niou, and C. Feng:Scripta Metall. Mater., 1994, vol. 31, pp. 297–302.

    Article  Google Scholar 

  36. M.J. Worswick, N. Qiang, P. Niessen, and R.J. Pick: inShock-Wave and High-Strain-Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, New York, NY, 1992, pp. 87–95.

    Google Scholar 

  37. C.L. Wittman, R.K. Garrett, J.B. Clark, and CM. Lopatin: inShock- Wave and High-Strain-Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, New York, NY, 1992, pp. 925–33.

    Google Scholar 

  38. C.O. Mgbokwere, S.R. Nutt, and J. Duffy:Mech. Mater., 1994, vol. 17, pp. 97–110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Dynamic Behavior of Materials,” presented at the 1994 Fall Meeting of TMS/ASM in Rosemont, Illinois, October 3-5, 1994, under the auspices of the TMS-SMD Mechanical Metallurgy Committee and the ASM-MSD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, M.A., Chen, Y.J., Marquis, F.D.S. et al. High-strain, high-strain-rate behavior of tantalum. Metall Mater Trans A 26, 2493–2501 (1995). https://doi.org/10.1007/BF02669407

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669407

Keywords

Navigation