Skip to main content
Log in

Volatilization of bismuth in copper matte converting —computer simulation

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A computer model has been developed to simulate the behavior of bismuth in copper matte converting at 1100 to 1300 °. The rate equation is integrated numerically by dividing a continuous process of matte converting into a great number of microsteps, in each of which the volatilization of Bi-bearing gases is thermodynamically calculated by assuming a steady state. The bubbles of offgas consisting of SO2 and N2 are assumed to be saturated with the vapors of BiS, Bi, BiO, and Bi2. However, the partial pressures of BiO and Bi2 are found to remain negligible at all stages of converting. BiS is the most volatile species over the slag-making stage with low grade mattes, but its volatility decreases markedly, becoming negligibly low over white metal. When the copper content of the initial matte is known together with the weight of matte, converting temperature and blowing rate of tuyere air, the present computer model can predict the Bi contents in all the phases involved (gas, slag, matte, copper) at any given time. The predictions by the present computer model are compared with the known commercial data from various smelters around the world. The agreements between the computer predictions and the commercial data are excellent in all cases, so that the present computer model can be used to monitor and optimize the bismuth elimination in the actual industrial operations of copper matte converting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. E. Buch:Trans. AIME, 1949, vol. 182, pp. 127–39.

    Google Scholar 

  2. A. P.C. Hallowes: Report RRA-543, Brit. Non-Ferr. Met. Res. Assoc., London, 1940.

    Google Scholar 

  3. R. W. Ruddle:The Physical Chemistry of Copper Smelting, Inst. Min. Met., London, 1953.

    Google Scholar 

  4. M. Nagamori and P. C. Chaubal:Metall. Trans. B, 1982, vol. 13B, p. 319.

    CAS  Google Scholar 

  5. H.H. Kellogg:Trans. TMS-AIME, 1967, vol. 239, pp. 1439–49.

    CAS  Google Scholar 

  6. J.S. Diakow, Y.F. Mak, and R.G. Orr: paper presented at the 14th Annual Conference of Metallurgists, Edmonton, Alberta, August 1975.

  7. F. E. Lathe and L. Hodnett:Trans. TMS-AIME, 1958, vol. 212, pp. 603–17.

    CAS  Google Scholar 

  8. R. E. Johnson, N. I. Themelis, and G. A. Eltringham:Copper and Nickel Converters, R. E. Johnson, ed., TMS-AIME, 1979, pp. 1–32.

  9. M. Nagamori and P. J. Mackey:Metall. Trans. B, 1978, vol. 9B, pp. 255–65.

    Article  CAS  Google Scholar 

  10. M. Nagamori and P.J. Mackey:Metall. Trans. B, 1978, vol. 9B, pp. 567–79.

    CAS  Google Scholar 

  11. P. Spira and N.J. Themelis:J. Metals, 1969, vol. 21, no. 4, pp. 35–42.

    CAS  Google Scholar 

  12. W. A. Krivsky and R. Schuhmann:Trans. TMS-AIME, 1957, vol. 209, pp. 981–88.

    Google Scholar 

  13. C.W. Bale and J.M. Toguri:Can. Met. Quart., 1976, vol. 15, pp. 305–18.

    CAS  Google Scholar 

  14. T. Rosenqvist and T. Hartvig: Meddelelse Nr. 12 fra Metallurgisk Komite, Part II, Trondheim, Norway, 1958.

  15. A. Luraschi and J. F. Elliott:Trans. Inst. Mining Met., 1980, vol. 89, pp. C14–25.

    Google Scholar 

  16. J. Gerlach, K. P. Kantzer, and F. Pawlek:Metallwiss. und Technik, 1963, vol. 17, pp. 1096–99.

    CAS  Google Scholar 

  17. A. K. Biswas and W. G. Davenport:Extractive Metallurgy of Copper, Pergamon Press, New York, NY, 1980.

    Google Scholar 

  18. G.C. McKerrow:J. Metals, 1957, vol. 9, no. 9, pp. 1114–17.

    CAS  Google Scholar 

  19. D. B. George, J. W. Donaldson, and R. E. Johnson:World Mining and Metals Technology, Proceedings of the Joint MMIJ-AIME Meeting, Denver, CO, A. Weiss, ed., AIME, New York, NY, 1976, vol. 1, pp. 534–50.

    Google Scholar 

  20. S. Asahina, K. Hosokura, and T. Hayashi:World Mining and Metals Technology, Proceedings of the Joint MMIJ-AIME Meeting, Denver, CO, A. Weiss, ed., AIME, New York, NY, 1976, vol. 2, pp. 856–74.

    Google Scholar 

  21. J.A. Vogt, P.J. Mackey, and G.C. Balfour:Copper and Nickel Converters, R. E. Johnson, ed., TMS-AIME, 1979, pp. 357–90.

  22. H.R. Potts:Bull. Inst. Mining Met., March 1948, no. 496, pp. 337–54.

  23. R. Hanks, J. van der Zel, P. Chesney, and G. B. Harris:Trans. Inst. Mining Met., 1979, vol. 88, pp. C99–106.

    CAS  Google Scholar 

  24. S. Edlund and S. Lundquist:Copper and Nickel Converters, R. E. Johnson, ed., TMS-AIME, 1979, pp. 239–56.

  25. O. Herneryd, O.A. Sundstrom, and A. Norro:J. Metals, 1954, vol. 6, no. 3, pp. 330–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Associate Professor, Department of Metallurgical Engineering, University of Utah, Salt Lake City, UT 84112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaubal, P.C., Nagamori, M. Volatilization of bismuth in copper matte converting —computer simulation. Metall Trans B 13, 339–348 (1982). https://doi.org/10.1007/BF02667749

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667749

Keywords

Navigation