Skip to main content
Log in

Elaboration of metal matrix composites from thixotropic alloy slurries using a new magnetohydrodynamic caster

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The working principle and the peculiarities of a new electromagnetic rheocaster, which is based on the use of rotating permanent magnets and which allows the production of intense three-dimensional (3-D) multiphase flows in solidifying semisolid alloy slurries and metal matrix composites, are described. This process can be applied to the direct continuous casting of billets, tubes, and slabs and is characterized by very low electric power consumption. Local measurement techniques are applied to the study of the evolution of non-Newtonian magnetohydrodynamic multiphase flow phenomena with the rotational speed of the inductor, the solid fraction of the aluminum alloy matrix, and the size and volume percent of SiC particles. An order of magnitude analysis of the various forces acting on the suspended crystals and SiC particles is given. The Theological behavior of electromagnetically rheocast ferrous metals, simulated by a lead-tin alloy, is also investigated. Satisfactory results concerning the microstructure of solidified aluminum slurries and aluminum matrix composites (homogeneity, crystal shape, grain size, fraction of primary solid, and distribution of SiC particles) were obtained. A discussion is presented relating the metallurgical findings to the heat and three-phase flow measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Br, Bθ :

magnetic field components inr, θ, andz

B z :

directions, respectively

B 0 :

stationary magnetic field vector

B :

variable magnetic field vector

f s :

primary solid fraction

f′ s :

SiC vol pct

F s = f s :

total solid fraction

F r , F gq :

electromagnetic body force components

F z :

applied on the liquid phase inr, θ, andz directions, respectively

F em :

electromagnetic force exerted on a spherical body

F b :

buoyancy force exerted on a spherical body

F d :

hydrodynamic drag force exerted on a spherical body

H :

free surface height

J r , J θ :

electric current density components inr, θ

J z :

andz directions, respectively

N :

rotational speed of the inductor

R :

mold radius

r :

radial position from the wall

U r , U θ :

velocity components inr, θ, andz

U z :

directions, respectively

U M :

peak of local velocity

U* :

dimensionless velocity

υ :

volume of a suspended particle

α :

helix angle

β :

shifting angle

υ :

kinematic viscosity

ρ :

density

:

electric conductivity

ω 0 :

angular velocity of the rotor

ω M :

peak of the slurry angular velocity

Reω =:

Reynolds number of rotationR 2ω M

References

  1. P.K. Rohatgi, R. Asthana, and S. Das:Int. Met. Rev., 1986, vol. 31 (3), pp. 115–39.

    Google Scholar 

  2. P.K. Rohatgi. S. Das, and T.K. Dan:J. Inst. Eng. (India), 1987, vol. 67, pp. 73–83.

    Google Scholar 

  3. F.A. Girot, L. Albingre, J.M. Quenisset, and R. Naslain:J. Met., 1987, vol. 39 (11), pp. 18–21.

    Google Scholar 

  4. M. Skibo and D. Shuster: International Patent No. WO 87/06624, Nov. 1987.

  5. A. Mortensen, J.A. Cornie, and M.C. Flemings:J. Met., 1988, vol. 40 (2), pp. 12–19.

    Google Scholar 

  6. Y. Tsunekawa, M. Okumiya, I. Niimi, and K. Yoneyama:J. Mater. Sci. Lett., 1988, vol. 7, pp. 830–32.

    Article  Google Scholar 

  7. P. Rohatgi:Metals Handbook, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1988, vol. 15, pp. 840–54.

    Google Scholar 

  8. C. Milliere and M. Suery:Mater. Sci. Technol., 1988, vol. 4, pp. 41–51.

    Article  Google Scholar 

  9. O.J. Ilegbusi and J. Szekely:Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 97–103.

    Article  Google Scholar 

  10. K. Ichikawa, S. Ishizuka, and K. Kinoshita:Trans. Jpn. Inst. Met., 1988, vol. 29 (7), pp. 598–607.

    Article  Google Scholar 

  11. P. Rohatgi, R. Asthana, and F. Yarandi:Solidification of Metal Matrix Composites, TMS, Warrendale, PA, 1989, pp. 51–65.

    Google Scholar 

  12. D. Hammond:Mod. Cast., 1989, vol. 8, pp. 29–31.

    Google Scholar 

  13. D.J. Lloyd:Compos. Sci. Technol., 1989, vol. 35, pp. 159–79.

    Article  Google Scholar 

  14. E. Klier, A. Mortensen, J. Cornie, and M.C. Flemings: International Patent No. WO 89/12515, Dec. 1989.

  15. O.J. Ilegbusi and J. Szekely:Metall. Trans. B, 1990, vol. 21B, pp. 183–90.

    Article  Google Scholar 

  16. P. Rohatgi:J. Met., 1991, vol. 43 (4), pp. 10–15.

    Google Scholar 

  17. P. Rohatgi and R. Asthana:J. Met., 1991, vol. 43 (5), pp. 35–41.

    Google Scholar 

  18. D.M. Stefanescu, S. Ahuja, B.K. Shindaw, and R.P. Phalnikar: Prof.2nd Int. Conf. on the Processing of Semi-Solid Alloys and Composites, SB. Brown and M.C. Flemings, eds., MIT, Cambridge, MA, 1992, pp. 406–16.

    Google Scholar 

  19. C. Vivès: French Patent No. 9100534, Jan. 1991.

  20. R.M. Bhagat:Metal Matrix Composites: Processing and Interfaces. Academic Press, New York, NY, 1991, pp. 43–82.

    Book  Google Scholar 

  21. D. Lewis:Metal Matrix Composites: Processing and Interfaces, Academic Press, New York, NY, 1991, pp. 121–50.

    Book  Google Scholar 

  22. B.R. Marple, S.J. Glass, and D.J. Green:Processing of Ceramic and Metal Matrix Composites, Proceedings The Metallurgical Society of the Canadian Institute of Mining and Metallurgy, Pergamon Press, New York, NY, 1992, vol. 17, pp. 120–31.

    Google Scholar 

  23. S. Nourbakhsh, F. Liang, and H. Margolin:Processing of Ceramic and Metal Matrix Composites, Proceedings The Metallurgical Society of the Canadian Institute of Mining and Metallurgy, Pergamon Press, New York, NY, 1992, vol. 17, pp. 195–205.

    Google Scholar 

  24. H.J. Rack:Metal Matrix Composites: Processing and Interfaces. Academic Press, New York, NY, 1991, pp. 83–101.

    Book  Google Scholar 

  25. R.K. Everett:Metal Matrix Composites: Processing and Interfaces. Academic Press, New York, NY, 1991, pp. 103–19.

    Book  Google Scholar 

  26. S. Dermarkar:Mem. Etudes Scient. Rev. Metall. (France), 1990, vol. 10, pp. 593–97.

    Google Scholar 

  27. D.B. Spencer, R. Mehrabian, and M.C. Flemings:Metall. Trans., 1972, vol. 3, pp. 1925–32.

    Article  Google Scholar 

  28. M.C. Flemings, R. Mehrabian, and R.G. Riek: U.S. Patent No. 3, 902, 544, Sept. 1975.

  29. P.A. Joly and R. Mehrabian:J. Mater. Sci., 1976, vol. 11, pp. 1393–18.

    Article  Google Scholar 

  30. J. Winter, J.A. Dantziz, and. D.E. Tyler: U.S. Patent No. 4, 434, 837, Mars 1984.

  31. J. Collot:Mem. Etudes Scient. Rev. Métall. (France), 1984, vol. 11, pp. 591–603.

    Google Scholar 

  32. J.M. Molenaar, F.W. Salemans, and L. Katgerman:J. Mater. Sci., 1985, vol. 20, pp. 700–09.

    Article  Google Scholar 

  33. J.-J.A. Cheng, D. Apelian, and R.D. Doherty:Metall. Trans. A, 1986, vol. 17A, pp. 2049–62.

    Article  Google Scholar 

  34. M.A. Taha, N.A. El-Mahallawy, and A.M. Assar:J. Mater. Sci., 1988, vol. 23, pp. 1379–84.

    Article  Google Scholar 

  35. M.A. Taha, N.A. El-Mahallawy, and A.M. Assar:J. Mater. Sci., 1988, vol. 23, pp. 1385–90.

    Article  Google Scholar 

  36. Ch. Vivès: French Patent No. 87 15817, Nov. 1987.

  37. Ch. Vivès: French Patent No. 88 04343, Mar. 1988.

  38. A. Tissier, D. Apelian, and G. Regazzoni:J. Mater. Sci., 1990, vol. 25, pp. 1184–96.

    Article  Google Scholar 

  39. M.C. Flemings:Metall. Trans. B, 1991, vol. 22B, pp. 269–93.

    Article  Google Scholar 

  40. C. Vivès:Metall. Trans. B, 1992, vol. 23B, pp. 189–206.

    Article  Google Scholar 

  41. R. Ricou and Ch. Vivès:Int. J. Heat Mass Transfer, 1982, vol. 25 (10), pp. 1579–98.

    Article  Google Scholar 

  42. H.C. Lee, J.W. Evans, and Ch. Vivès:Metall. Trans. B, 1984, vol. 15B, pp. 734–36.

    Article  Google Scholar 

  43. Ch. Vivès:Int. J. Heat Mass Transfer, 1990, vol. 33 (12), pp. 2585–98.

    Article  Google Scholar 

  44. Ch. Vivès and R. Ricou:Metall. Trans. B, 1985, vol. 16B, pp. 377–84.

    Article  Google Scholar 

  45. Ch. Vivès:AIAA Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, Washington, DC, 1983, vol. 84, pp. 387–01.

    Google Scholar 

  46. U. Andres:Magnetohydrodynamic and Magnetohydrostatic Methods of Mineral Separation, Israel University Press, Jerusalem, 1976.

    Google Scholar 

  47. A. Warczok, A. Godycki-Cwirko, and T. Ugard:Magnetohydrodynamics in Process Metallurgy, TMS, Warrendale, PA, 1992, pp. 291–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivès, C. Elaboration of metal matrix composites from thixotropic alloy slurries using a new magnetohydrodynamic caster. Metall Trans B 24, 493–510 (1993). https://doi.org/10.1007/BF02666433

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666433

Keywords

Navigation