Skip to main content
Log in

In-Situ generated arsine radicals for gallium arsenide homoepitaxy

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Removed from the deposition region, an upstream hydrogen microwave plasma generates arsenic hydrides by etching the surface of solid arsenic. The hydrides are transported to the deposition region and mixed with trimethylgallium to achieve low temperature (350°-400°C) and low pressure (750 mtorr) homoepitaxial GaAs films. Low precursor V:III ratios are used to achieve homoepitaxial films with high levels of carbon dopants (l019 to mid 1020 cm−3). No active or afterglow plasma exists in the growth region. The observed homo epitaxial growth activation energies of 54 kcal/mole and 66 kcal/mole for films deposited with V:III ratios of 1:1 and 1:4, respectively, are in the range of those reported for the heterogeneous decomposition of trimethylgallium in the absence of arsine. The films are found to be of good crystalline quality via double crystal x-ray rocking curves. The majority carriers are holes and have hole concentrations that correlate to the carbon doping, as determined by room temperature Hall effect measurements and secondary ion mass spectroscopy. Carrier mobility versus carbon concentration is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Omstead, A.V. Annapragada and K.F. Jensen,Appl. Phys. Lett. 57, 2543 (1990).

    Article  CAS  Google Scholar 

  2. N.M. Johnson, R.A. Street, J. Walker and K. Winer,J. Noncryst. Solid 114, 169 (1989).

    Article  CAS  Google Scholar 

  3. J. Marinace, IBM Research Report No. 11705. Also G.J. Collins, J.R. McNeil and Z. Yu, U. S. Patent No. 4,952,294 (28 August 1990).

  4. M. Naitoh, T. Soga, T. Jimbo and M. Umeno,J. Cryst. Growth 93, 52 (1988).

    Article  CAS  Google Scholar 

  5. D.H. Reep and S.K. Ghandi,J. Electrochem. Soc. 130, 675 (1983).

    Article  CAS  Google Scholar 

  6. M. Uneta, Y. Watanabe and Y. Ohmachi,J. Cryst. Growth 110, 576 (1990).

    Article  Google Scholar 

  7. M.G. Jacko and S.J.W. Price,Can. J. Chem. 41, 1560 (1963).

    Article  CAS  Google Scholar 

  8. K. Evenson,Rev. Sci. Instr. 36, 294 (1965).

    Article  Google Scholar 

  9. F.W. McLafferty and D.B. Stauffer,The Wiley / NBS Registry of Mass Spectral Data, vol. 1 (New York: John Wiley and Sons, 1988).

    Google Scholar 

  10. W.L. Jolly, L.B. Anderson and R.T. Beltrami,J. Am. Chem. Soc. 79, 2443 (1957).

    Article  CAS  Google Scholar 

  11. T.J. Mountziaris and K.F. Jensen,J. Electrochem. Soc. 138, 2426 (1991).

    Article  CAS  Google Scholar 

  12. S.T. Picraux, B.L. Doyle and J.Y. Tsau,Mater. Sci. Techn. 33, 139 (1991).

    CAS  Google Scholar 

  13. T. Sanada and O. Wada,Jpn. J. Appl. Phys. 19, L491 (1980).

    Article  CAS  Google Scholar 

  14. M.C. Hanna, Z.H. Lu, and A. Majerfeld,Appl. Phys. Lett. 58, 164 (1991).

    Article  CAS  Google Scholar 

  15. K. Saito, M. Konagi and K. Takahashi,Jpn. J. Appl. Phys. 29, 1900 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pihlstrom, B.G., Thompson, L.R., Shaw, D.M. et al. In-Situ generated arsine radicals for gallium arsenide homoepitaxy. J. Electron. Mater. 22, 81–86 (1993). https://doi.org/10.1007/BF02665727

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665727

Key words

Navigation