Skip to main content
Log in

Properties and use of cycled grown OMVPE GaAs:Zn, GaAs:Se, and GaAs:Si layers for high-conductance GaAs tunnel junctions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Heavily doped GaAs layers for high conductance GaAs tunnel junctions have been grown by atmospheric pressure organometallic vapor phase epitaxy (OMVPE) using Zn as the dopant for thep + regions and either Se or Si as the dopant for then + regions. At a growth temperature of 700° C using a “cycled” growth technique for the Zn-dopedp ++-GaAs layer, both the conductance and the peak current density of the tunnel diode has been increased by a factor of ∼65 compared to a tunnel junction with a continuously grown Zn-doped p+-GaAs. The conductance of the tunnel junction, which is maximized at a growth temperature of 650° C using cycled growth, is comparable to the best reported values for tunnel junctions grown by molecular beam epitaxy. Cycled growths forn + Se-doped regions are found to reduce the conductance of a tunnel junction by more than two orders of magnitude. However, cycled growth for the n+-GaAs regions with Si doping show no conductance degradation. A model based on incorporation sites of these dopants during OMVPE growth of GaAs is presented to account for the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Bedair, J. A. Hutchby, J. P. C. Chiang, M. Simons, and J. R. Hauser, Proc. of the 15th IEEE Photovoltaic Specialists Conf. (IEEE, New York, 1982), p. 692.

    Google Scholar 

  2. J. M. Olson, S. R. Kurtz, A. E. Kibbler and P. Faine, Appl. Phys. Lett.56, 623 (1990).

    Article  CAS  Google Scholar 

  3. J. V. DiLorenzo and D. D. Khandelwal, “GaAs FET Principles and Technology,” Artech House, Dedham, Massachusetts, 646 (1982).

    Google Scholar 

  4. S. M. Sze, “Physics of Semiconductor Devices,” 2nd Ed., John Wiley, New York, 517 (1982).

    Google Scholar 

  5. H. H. Berger, J. Electrochem. Soc.119, 507 (1972).

    Article  CAS  Google Scholar 

  6. R. J. Field and S. K. Ghandhi, J. Cryst. Growth74, 551 (1986).

    Article  CAS  Google Scholar 

  7. A. Luque, J. Martin and G. L. Arujo, J. Electrochem. Soc.123, 249 (1976).

    Article  CAS  Google Scholar 

  8. F. Kuech, M. A. Tischler, R. Potemski, F. Cardone and G. Scilla, J. Cryst. Growth98, 174 (1989).

    Article  CAS  Google Scholar 

  9. D. T. J. Hurle, J. Phys. Chem. Solids40, 627 (1979).

    Article  CAS  Google Scholar 

  10. R. Venkatasubramanian, S. K. Ghandhi and T. F. Kuech, J. Cryst. Growth97, 827 (1989).

    Article  CAS  Google Scholar 

  11. G. Mathur, M. L. Wheaton, J. M. Borrego and S. K. Ghandhi, J. Appl. Phys.57, 4711 (1985).

    Article  CAS  Google Scholar 

  12. R. Venkatasubramanian, K. Patel and S. K. Ghandhi, J. Cryst. Growth94, 34 (1989).

    Article  CAS  Google Scholar 

  13. S. K. Ghandhi, R. T. Huang and J. M. Borrego, Appl. Phys. Lett.48, 415 (1986).

    Article  CAS  Google Scholar 

  14. D. L. Miller, S. W. Zehr and J. S. Harris, Jr., J. Appl. Phys.53, 744 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatasubramanian, R., Timmons, M.L., Colpitts, T.S. et al. Properties and use of cycled grown OMVPE GaAs:Zn, GaAs:Se, and GaAs:Si layers for high-conductance GaAs tunnel junctions. J. Electron. Mater. 21, 893–899 (1992). https://doi.org/10.1007/BF02665546

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665546

Key words

Navigation