Skip to main content
Log in

Slip-step dissolution and micromechanical analysis to model stress-corrosion crack growth of type 321 stainless steel in boiling mgci2

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It is hypothesized that for ductile austenitic stainless steels exposed to boiling MgCl2 solution, the relevant crack propagation mechanism is slip dissolution. This model relates crack advance to oxidation or anodic dissolution that occurs on the bare surface that is created when a thermo-dynamically stable, protective film at the crack tip mechanically ruptured. Based on the model of slip-bare metal dissolution repassivation and crack-tip strain analysis, a theoretical equation of stress-corrosion crack growth rate as a function of crack-tip strain rate and potential for 321 stainless steel in boiling 42 pct MgCl2 solution is proposed. The theoretical prediction shows that when the crack-tip strain rate changes from 10−4 to 10−2 s−1 the crack propagation rate changes from 0.01 to 3 mm/h at the free corrosion potential (−0.35 VSCE). If the crack-tip strain rate is above 10−2/s, the crack propagation rate should correspond to the upper bound determined by the maximum metal dissolution rate. When the crack-tip rate is below 10−4/s, the crack propagation rate is below 0.01 mm/h. The slip-step dissolution model predicted that there exists a critical potentialE c, above which the crack propagation rate is independent on potential, but below which the crack propagation rate decreased with decreasing potential. The theoretical prediction has been verified by slow strain rate tests of 321 stainless steel under potential control (above −0.35 VSCE) in 42 pct MgCl2 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Newman and A. Mehta:Environment-Induced Cracking of Metals, NACE, Houston, TX, 1990, p. 489.

    Google Scholar 

  2. K.J. Kessler and H. Kaesche:Electrochemical Corrosion Testing, ASTM STP 727, 1989, p. 84.

  3. J.F. Rimbert and J. Pagetti:Corros. Sci., 1980, vol. 20, p. 189.

    Article  CAS  Google Scholar 

  4. P.L. Andresen and D.J. Duquette:Corros. Sci., 1980, vol. 20, p. 211.

    Article  CAS  Google Scholar 

  5. F. Mancia and A. Tamba:Corrosion, 1986, vol. 42 (6), p. 362.

    CAS  Google Scholar 

  6. P. Chung, A. Yoshitake, G. Cragnolino, and D.D. Macdonald:Corrosion, 1985, vol. 41 (3), p. 159.

    CAS  Google Scholar 

  7. L.F. Lin, G. Cragnolino, Z. Szklarska-Smialowska, and D.D. Macdonald:Corrosion, 1981, vol. 37 (11), p. 616.

    CAS  Google Scholar 

  8. R.N. Parkins:Corrosion, 1987, vol. 43 (3), p. 133.

    Google Scholar 

  9. G. Herbsleb and W. Schwenk:Corrosion, 1985, vol. 41 (8), p. 431.

    CAS  Google Scholar 

  10. R.N. Parkins:Br. Corros. J., 1972, vol. 7 (2), p. 154.

    CAS  Google Scholar 

  11. J.M. Sutcliffe, R.R. Fessier, W.K. Boyd, and R.N. Parkins:Corrosion, 1972, vol. 28 (7), p. 313.

    CAS  Google Scholar 

  12. F.P. Ford and P.L. Andresen:Parkins Symposium on Fundamental Aspects of Stress Corrosion Cracking, S.M. Bruemmer, eds., TMS, Warrendale, PA, 1991, p. 43.

    Google Scholar 

  13. J. Congletob, T. Shoji, and R.N. Parkins:Corros. Sci., 1985, vol. 25, p. 633.

    Article  Google Scholar 

  14. T. Nakayama and M. Takano:Corrosion, 1986, vol. 42 (1), p. 10.

    CAS  Google Scholar 

  15. R.W. Steahie:The Theory of Stress Corrosion Cracking, J.C. Scully, ed., North Atlantic Treaty Organization, Brussels, 1971, p. 223.

    Google Scholar 

  16. R.W. Steahie:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, NACE, Houston, TX, 1977, p. 180.

    Google Scholar 

  17. P.L. Andresen and P.F.P. Ford:Mater. Sci. Eng., 1988, vol. A103, p. 167.

    CAS  Google Scholar 

  18. F.P. Ford:Corrosion Processes, R.N. Parkins, ed., Applied Science Publishers, London, 1982.

    Google Scholar 

  19. R.N. Parkins:Proc. 3rd Int. Conf. on Mechanical Behavior of Materials, K.J. Miller and R.F. Smith, eds., Elmsview, NY, Pergamon Press, New York, NY, 1979, vol. 1, pp. 139–64.

    Google Scholar 

  20. T.R. Beck:Corrosion 30, 1974, vol. 11, p. 408.

    Google Scholar 

  21. H.L. Logan:J. Nat. Bur. Stand., 1952, vol. 48, p. 99.

    CAS  Google Scholar 

  22. R.W. Staehle:Theory of Stress Corrosion Cracking, J.C. Scully, ed., NATO, Brussels, 1971, p. 223.

    Google Scholar 

  23. J.C. Scully:Corros. Sci., 1968, vol. 8, p. 771.

    Article  Google Scholar 

  24. S.J. Hudak: Ph.D. Dissertation, Lehigh University, Bethlehem, PA, 1988.

    Google Scholar 

  25. F.P. Ford and P.L. Andresen:Advances in Fracture Research, Pergamon Press, Oxford, 1989.

    Google Scholar 

  26. D.L. Li, R.Z. Zhu, and W.Q. Zhang:Sci. China, 1989, vol. 32 (10), pp. 1251–59.

    CAS  Google Scholar 

  27. F.P. Ford, G.T. Burstein, and T.P. Hoar:J. Electrochem. Soc, 1980, vol. 127 (6), pp. 1325–31.

    Article  CAS  Google Scholar 

  28. G.T. Burstein and H. Davies:J. Electrochem. Soc, 1981, vol. 128 (1), pp. 33–39.

    Article  CAS  Google Scholar 

  29. G.T. Burstein and G.W. Ashley:Corrosion, 1983, vol. 39 (6), pp. 241–47.

    CAS  Google Scholar 

  30. G.T. Burstein and G.W. Ashley:Corrosion, 1984, vol. 40 (3), pp. 110–15.

    CAS  Google Scholar 

  31. G.T. Burstein and R.C. Newman:Electrochem. Acta, 1980, vol. 25, pp. 1009–13.

    Article  CAS  Google Scholar 

  32. G.T. Burstein and P.I. Marshall:Corros. Sci., 1983, vol. 23 (2), pp. 125–37.

    Article  CAS  Google Scholar 

  33. I. Maier and J.R. Galvele:Corrosion, 1980, vol. 36 (2), p. 60.

    CAS  Google Scholar 

  34. J.R. Galvele, S.B. de Wexler, and I. Gardiazabal:Corrosion, 1975, vol. 31, p. 352.

    CAS  Google Scholar 

  35. D. Li and X. Mao:Metall. Trans. A, 1992, vol. 23A, p. 2873.

    CAS  Google Scholar 

  36. R.N. Parkins:Parkins Symposium on Fundamental Aspects of Stress Corrosion Cracking, S.M. Bruemmer, E.I. Meletis, R.H. Jones, W.W. Gerberich, F.P. Ford, and R.W. Staehle, eds., TMS, Warrendale, PA, 1991, p. 3.

    Google Scholar 

  37. H. Ohtuka and A. Ikushima:Mechanical Behaviour, W.G. Moffate and J. Wulff, eds., New York, NY, 1965, p. 92.

  38. D. Li and Z.X. Huang:J. Chin. Soc. Corros. Protect., 1986, vol. 6 (2), p. 177.

    Google Scholar 

  39. A.J. Russel and D. Tromans:Metall Trans. A, 1981, vol. 12A, p. 613.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, X., Li, D. Slip-step dissolution and micromechanical analysis to model stress-corrosion crack growth of type 321 stainless steel in boiling mgci2 . Metall Mater Trans A 26, 641–646 (1995). https://doi.org/10.1007/BF02663913

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663913

Keywords

Navigation