Skip to main content
Log in

Failure characteristics of 6061/AI2O3/15ρ and 2014/AI2O33/15ρ composites as a function of loading rate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of loading rate on the toughness and fracture mechanisms of two cast 6061/Al2O3/15p and 2014/Al2O3/15p composites under the as-worked (AW) and AW + T6 conditions have been examined. The quasistatic bending and high-rate impact tests were conducted over strain rates from 5 X 10-4 to 1 X 103 s-1 using screw-driven or servohydraulic high-rate systems. The results showed that the peak loadP max, specimen deflectiond, specimen lateral expansion fraction Δw, crack initiation energyE i, propagation energyE p, total fracture energyE t and deformation zone all tended to increase with increasing strain rate. Under quasistatic loading, the composites failed predominantly by ma-trix/reinforcement interface decohesion. As the loading rate increased, reinforcement failure became the major failure mechanism. Differences in the effect of matrix microstructure and stress state on the fracture properties also are discussed. In comparing the fracture modes in the AW and AW + T6 specimens, the latter showed a higher tendency toward particle cracking. Based on mechanical data, the degree of specimen deflection and expansion and fracture modes, the AW composites exhibited a higher strain-rate dependence. The T6 specimens, due to their intrinsicly more brittle nature, appeared to be less influenced by loading rate over the strain-rate range examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CM. Friend:Mater. Sci. Technol, 1989, vol. 5, pp. 1–7.

    CAS  Google Scholar 

  2. J.I. Lewandowski, C. Liu, and W.H. Hunt:Mater. Sci. Eng., 1989, vol. A107, pp. 241–55.

    CAS  Google Scholar 

  3. P.M. Mummery, B. Derty, and C.B. Scruby:Acta Metall. Mater., 1993, vol. 41, pp. 1431–45.

    Article  CAS  Google Scholar 

  4. S.R. Nutt and J.M. Duva:Scripta Metall, 1986, vol. 20, pp. 1055–58.

    Article  CAS  Google Scholar 

  5. DJ. Lloyd:Acta Metall. Mater., 1991, vol. 39, pp. 59–71.

    Article  CAS  Google Scholar 

  6. Y. Brechet, J.D. Embury, S. Tao, and L. Luo:Acta Metall. Mater., 1991, vol. 39, pp. 1781–86.

    Article  CAS  Google Scholar 

  7. J. Yang, C. Cady, M.S. Hu, F. Zok, R. Mehrabian, and A.G. Evans:Acta Metall. Mater., 1990, vol. 38, pp. 2613–19.

    Article  CAS  Google Scholar 

  8. S.V. Kamat, J.P. Hirth, and R. Mehrabian:Acta Metall, 1989, vol. 37, pp. 2395–2402.

    Article  CAS  Google Scholar 

  9. C.P. You, A.W. Thompson, and I.M. Bernstein:Scripta Metall, 1987, vol. 21, pp. 181–85.

    Article  CAS  Google Scholar 

  10. L. Llorca, A. Needleman, and S. Suresh:Acta Metall Mater., 1991, vol. 39, pp. 2317–35.

    Article  CAS  Google Scholar 

  11. R.J. Arsenault, N. Shi, C.R. Feng, and L. Wang:Mater. Sci. Eng. A, 1991, vol. A131, pp. 55–68.

    CAS  Google Scholar 

  12. L.E. Murr: inShock Wave and High-Strain-Rate Phenomena in Metals (Concepts and Applications), M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 607–73.

    Google Scholar 

  13. J.C. Huang and G.T. Gray III:Acta Metall, 1989, vol. 37, pp. 3335–47.

    Article  CAS  Google Scholar 

  14. J.C. Huang and G.T. Gray III:Metall. Trans. A, 1989, vol. 20A, pp. 1061–75.

    CAS  Google Scholar 

  15. L.B. Greszczuk:Impact Dynamics, J.A. Zukas, ed., Wiley, NY, 1982.

    Google Scholar 

  16. P.S. DeCarli and M.A. Meyers: inShock Wave and High-Strain-Rate Phenomena in Metals (Concepts and Applications), M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981; pp. 341–73.

    Google Scholar 

  17. S.M. Pickard, B. Derby, J. Harding, and M. Taya:Scripta Metall, 1988, vol. 22, pp. 601–06.

    Article  CAS  Google Scholar 

  18. C.-C. Perng, J.-R. Hwang, and J.-L. Doong:Mater. Sci. Eng. A, 1993, vol. A171, pp. 213–21.

    CAS  Google Scholar 

  19. T.G. Nieh, C.A. Henshall, and J. Wadsworth:Scripta Metall, 1984, vol. 18, pp. 1405–08.

    Article  CAS  Google Scholar 

  20. T. Imai, M. Mabuchi, Y. Tozawa, Y. Murase and J. Kusui: inMetal and Ceramic Matrix Composites: Processing, Modelling and Mechanical Behavior, R.B. Bhagat, A.H. Clauer, P. Kumar, and A.M. Ritter, eds., TMS-AIME, Warrendale, PA, 1990, pp. 235–42.

    Google Scholar 

  21. T. Imai, M. Mabuchi, Y. Tozawa and M. Yamada:J. Mater. Sci. Lett., 1990, vol. 9, pp. 255–57.

    Article  CAS  Google Scholar 

  22. M. Mabuchi and T. Imai:J. Mater. Sci. Lett., 1990, vol. 9, pp. 761–62.

    Article  CAS  Google Scholar 

  23. K. Higashi, T. Okada, T. Mukai, S. Tanimura, T.G. Nieh, and J. Wadsworth:Scripta Metall. Mater., 1992, vol. 26, pp. 185–90.

    Article  CAS  Google Scholar 

  24. J.-H. Kim, D.N. Lee, and K.H. Oh:Scripta Metall. Mater, 1993, vol. 29, pp. 377–82.

    Article  CAS  Google Scholar 

  25. D. Kwon, S. Lee, and B.-I. Roh:Metall. Trans. A, 1993, vol. 24A, pp. 1125–31.

    CAS  Google Scholar 

  26. A.F. Whitehouse and T.W. Clyne:Acta Metall Mater, 1993, vol. 41, pp. 1701–11.

    Article  CAS  Google Scholar 

  27. J. Llorca, A. Martin, J. Ruiz, and M. Elices:Metall. Trans. A, 1993, vol. 24A, pp. 1575–88.

    CAS  Google Scholar 

  28. M.K. Surappa and P. Sivakumar:Composite Sci. Tech., 1993, vol. 46, pp. 287–92.

    Article  CAS  Google Scholar 

  29. P.M. Singh and J.J. Lewandowski:Metall. Trans. A, 1993, vol. 24A, pp. 2531–43.

    CAS  Google Scholar 

  30. D.S. Liu, M. Manoharan, and J.J. Lewandowski:Scripta Metall., 1989, vol. 23, pp. 253–56.

    Article  CAS  Google Scholar 

  31. J.J. Lewandowski, D.S. Liu, and C. Liu:Scripta Metall, 1991, vol. 25, pp. 21–26.

    Article  CAS  Google Scholar 

  32. D.S. Liu and J.J. Lewandowski:Metall Trans. A, 1993, vol. 24A, pp. 601–08.

    CAS  Google Scholar 

  33. D.S. Liu and J.J. Lewandowski:Metall Trans. A, 1993, vol. 24A, pp. 609–15.

    CAS  Google Scholar 

  34. P.M. Singh and J.J. Lewandowski:Scripta Metall. Mater., 1993, vol. 29, pp. 199–204.

    Article  CAS  Google Scholar 

  35. L. Wei and J.C. Huang:Mater. Sci. Technol, 1993, vol. 9, pp. 841–52.

    Google Scholar 

  36. D.F. Adams:Proc. 4th Conf. Composite Materials: Testing and Design, ASTM STP 617, ASTM, Philadelphia, PA, 1977, pp. 409–26.

    Google Scholar 

  37. M. Taya and R.J. Arsenault:Metal Matrix Composites, Thermomechanical Behavior, Pergamon Press, Oxford, United Kingdom, 1989, pp. 80–101.

    Google Scholar 

  38. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter: inHigh-Velocity Impact Phenomena, R. Kinslow, ed., Academic Press, New York, NY, 1970, pp. 293–417.

    Google Scholar 

  39. J.C. Huang, Y.S. Lo, and G.T. Gray III:Mater. Chem. Phys., 1993, vol. 35, pp. 71–85.

    Article  CAS  Google Scholar 

  40. D.E. Grady and J.R. Asay:J. Appl. Phys., 1982, vol. 53, pp. 7350–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, B.Y., Huang, J.C. Failure characteristics of 6061/AI2O3/15ρ and 2014/AI2O33/15ρ composites as a function of loading rate. Metall Mater Trans A 27, 3095–3107 (1996). https://doi.org/10.1007/BF02663859

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663859

Keywords

Navigation