Skip to main content
Log in

Diffusion of silicon in aluminum

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Interdiffusion coefficients in Al-Si alloys were determined by Matano’s method in the tem-perature range from 753 to 893 K with the couple consisting of pure aluminum and an Al-Si alloy. Temperature dependence of the impurity diffusion coefficients of Si in Al, obtained by extrapolation of the concentration dependence of the interdiffusion coeffi-cient to zero mole fraction of Si, is given by the following equation: DSi/Al = (2.02+0.97 -0.66 × 10-4 exp [-(136 ±3) kJ mol-1/RT] m2/s. p ] The Kirkendall marker was found to move toward the Si-rich side, indicating that the Si atom diffuses faster than the Al atom in Al-Si alloys. From the interdiffusion coeffi-cient and the marker shift, the intrinsic diffusion coefficients were calculated.

The difference in the activation energies (ΔQ) between the impurity diffusion of Si in Al and the self-diffusion of Al was estimated by means of the asymptotic oscillating po-tential and the Le Claire theory. The calculated value of ΔQ is in fair agreement with the experimental value. The vacancy-solute binding energy for Si in Al was also dis-cussed based on the diffusion data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bishop and K. E. Fletcher:Int. Met. Rev., 1972, vol. 17, pp. 203–25.

    CAS  Google Scholar 

  2. W. G. Fircke, Jr.:Scr. Met., 1972, vol. 6, pp. 1139–44.

    Article  Google Scholar 

  3. D. Bergner and E. Cytenn:Neue Hütte, 1973, vol. 18, pp. 356–61.

    CAS  Google Scholar 

  4. A. Beerwald:Z. Elektrochem., 1939, vol. 45, pp. 789–95.

    CAS  Google Scholar 

  5. H. Bückle:Z. Elektrochem., 1943, vol. 49, pp. 238–42.

    Google Scholar 

  6. R. F. Mehl, F. N. Rhines, and K. A. von den Stein:Metals Alloys, 1941, vol. 13, pp. 41–44.

    CAS  Google Scholar 

  7. L. S. Darken:Trans. AIME, 1948, vol. 175, pp. 184–201.

    Google Scholar 

  8. C. Matano:Jap. J. Phys., 1933, vol. 8, pp. 109–13.

    CAS  Google Scholar 

  9. M. Beyler and Y. Adda:J. Phys., 1968, vol. 29, pp. 345–52.

    Google Scholar 

  10. C. Y. Sun: Ph.D. Thesis, University of Illinois at Urbana-Champaign, IL, 1971.

    Google Scholar 

  11. G. J. Van Gurp:J. Appl Phys., 1973, vol. 44, pp. 2040–50.

    Article  Google Scholar 

  12. J. O. McCaldin and H. Sankur:Appl Phys. Lett., 1971, vol. 19, pp. 524–27.

    Article  CAS  Google Scholar 

  13. A. D. Le Claire:Phil Mag., 1962, vol. 7, pp. 141–67.

    Article  CAS  Google Scholar 

  14. A. P. Blandin and J. L. Déplanté:J. Phys. Solids, 1965, vol. 26, pp. 381–89.

    Article  Google Scholar 

  15. C. P. Flynn:Point Defects and Diffusion, p. 729, Clarendon Press, Oxford, 1972.

    Google Scholar 

  16. F. J. Blatt:Phys. Rev., 1957, vol. 108, pp. 285–90.

    Article  CAS  Google Scholar 

  17. S. Fujikawa and K. Hirano:Trans. Jap. Inst. Metals, 1976, vol. 17, pp. 809–18.

    CAS  Google Scholar 

  18. S. Fujikawa and K. Hirano:Mater. Sci. Eng., 1977, vol. 27, pp. 25–33.

    Article  CAS  Google Scholar 

  19. R. P. Reed:Cryogenics, 1972, vol. 12, pp. 259–91.

    Article  CAS  Google Scholar 

  20. W. B. Pearson:A Handbook of Lattice Spacings and Structure of Metals and Alloys, p. 382, Pergamon Press, New York City, 1958.

    Google Scholar 

  21. J.Takamura, M. Koike, and D. Furukawa: J. Nucl Mater., 1978, vol. 69 and 70, in press.

  22. P. G. Shewmon:Diffusion in Solids, p. 106, McGraw-Hill, New York City, 1963.

    Google Scholar 

  23. P. S. Ho and R. Benedek: Report No. RC 4705, IBM Thomas J. Watson Research Center, NYC, January, 1974.

    Google Scholar 

  24. R. L. Peck and K. H. Westmacott:Metals Sci. J, 1971, vol. 5, pp. 155–59.

    Article  CAS  Google Scholar 

  25. S. M. Kim, W. J. L. Buyers, P. Martel, and G. M. Hood:J. Phys. F: Metal Phys., 1974, vol. 4, pp. 343–50.

    Article  CAS  Google Scholar 

  26. J. Burke and A. D. King:Phil. Mag, 1970, vol. 21, pp. 7–22.

    Article  CAS  Google Scholar 

  27. K. Furukawa, J. Takamura, N. Kuwana, R. Tahara, and M. Abe:J. Phys. Soc. Japan, 1976, vol. 41, pp. 1584–92.

    Article  CAS  Google Scholar 

  28. L. Kornblit and J. Pelleg:Phys. Rev. B, 1977, vol. 16, pp. 1164–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly Undergraduate Student, Tohoku University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujikawa, Si., Hirano, Ki. & Fukushima, Y. Diffusion of silicon in aluminum. Metall Trans A 9, 1811–1815 (1978). https://doi.org/10.1007/BF02663412

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663412

Keywords

Navigation