Skip to main content
Log in

Hydrogen retrapping after thermal charging of hydrogen in iron single crystal

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A theory to estimate and describe the behavior of supersaturated hydrogen in interstitial sites of a normal lattice and in trap sites is suggested, and the experimental proof is provided by thermal analysis. In this theory, variation with temperature changes of the equilibrium state between hydrogen in trapping sites and in normal lattice sites, which occurs during rapid cooling after hydrogen charging at high temperature, is considered. Two evolution rate peaks of hy-drogen corresponding to a reversible trap, a dislocation, and to an irreversible trap, a microvoid, are observed, respectively, at 388 and 538 K in a thermal analysis plot. The hydrogen amount released from the reversible trap is increased with decreasing microvoid concentration, even though the reversible trap density is maintained at the same level. According to the theoretical analysis, supersaturated hydrogen dissolved in a normal lattice site by a rapid cooling of hydrogen-charged iron from high temperature is predominantly retrapped into the vacant irreversible trap-ping sites. The remaining hydrogen exists in the normal lattice interstitial sites and will maintain local equilibrium with hydrogen in the reversible trap sites. The apparent hydrogen diffusivities at 293 K with each type of trap are estimated to be 1 × 10-6 cm2/s for reversible traps and 4 × 10-8 cm2/s for microvoid traps, based on changes in the hydrogen amount released from each type of trap with the room-temperature anneal time in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-L. Lee and J.-Y. Lee:Metall. Trans. A, 1985, vol. 16A, pp. 468–71.

    CAS  Google Scholar 

  2. A.J. Kumnick and H.H. Johnson:Acta Metall., 1980, vol. 28, pp. 33–39.

    Article  CAS  Google Scholar 

  3. J.-L. Lee and J.-Y. Lee:Metal Sci., 1983, vol. 17, pp. 426–32.

    CAS  Google Scholar 

  4. K. Kiuchi and R.B. McLellan:Acta Metall., 1983, vol. 31, pp. 961–84.

    Article  CAS  Google Scholar 

  5. R. Garber, I. M. Bernstein, and A.W. Thompson:Metall. Trans. A, 1981, vol. 12A, pp. 225–34.

    Google Scholar 

  6. I.M. Bernstein:Metall. Trans., 1970, vol. 1, pp. 3143–50.

    CAS  Google Scholar 

  7. G.M. Pressouyre and I.M. Bernstein:Metall. Trans. A, 1981, vol. 12A, pp. 835–44.

    Google Scholar 

  8. G.M. Pressouyre and I.M. Bernstein:Metall. Trans. A, 1978, vol. 9A, pp. 1571–80.

    CAS  Google Scholar 

  9. C. L. Briant:Metall. Trans. A, 1978, vol. 9A, pp. 731–33.

    CAS  Google Scholar 

  10. R. Gibala:Trans. AIME, 1967, vol. 239, pp. 1574–80.

    CAS  Google Scholar 

  11. M.A.V. Davanathan and Z. Stachurski:Proc. Roy. Soc, 1962, vol. A270, pp. 90–102.

    Google Scholar 

  12. J.-L. Lee, J.T. Waber, and Y.K. Park:Scripta Metall, 1986, vol. 20, pp. 323–28.

    Article  Google Scholar 

  13. W.Y. Choo and J.-Y. Lee:Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    CAS  Google Scholar 

  14. J.-L. Lee, J.T. Waber, Y.K. Park, and J.T.M. de Hosson:Mater. Sci. Eng., 1986, vol. 81, pp. 379–90.

    Article  CAS  Google Scholar 

  15. J.-L. Lee and J.T. Waber:Metall. Trans. A, in press.

  16. J.-L. Lee and J.-Y. Lee:Metall. Trans. A, 1986, vol. 17A, pp. 2183–86.

    CAS  Google Scholar 

  17. J.-L. Lee and J.-Y. Lee:Phil. Mag. A, 1987, vol. 56, pp. 293–309.

    Article  CAS  Google Scholar 

  18. J.-L. Lee and J.-Y. Lee:J. Mater. Sci., 1987, vol. 22, pp. 3939–48.

    Article  CAS  Google Scholar 

  19. A. McNabb and P.K. Foster:Trans. TMS-AIME, 1963, vol. 227, pp. 618–27.

    CAS  Google Scholar 

  20. O.D. Gonzalez:Trans. TMS-AIME, 1969, vol. 245, pp. 607–12.

    CAS  Google Scholar 

  21. R.A. Oriani:Acta Metall., 1970, vol. 18, pp. 147–57.

    Article  CAS  Google Scholar 

  22. J. Crank:The Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford, 1975, p. 72.

    Google Scholar 

  23. J.L. Lee: Ph.D. Thesis, Korea Advanced Institute of Science and Technology, Seoul, Korea, 1985.

    Google Scholar 

  24. I.I. Garber and J.V. Skorinin:Wear, 1978, vol. 51, pp. 327–36.

    Article  Google Scholar 

  25. A.J. Kumnick and H.H. Johnson:Metall. Trans., 1974, vol. 5, pp. 1199–1206.

    Article  CAS  Google Scholar 

  26. G.W. Hong and J.Y. Lee:Acta Metall., 1984, vol. 32, pp. 1581–89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Korea Advanced Institute of Science and Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JL., Lee, JY. Hydrogen retrapping after thermal charging of hydrogen in iron single crystal. Metall Trans A 20, 1793–1802 (1989). https://doi.org/10.1007/BF02663210

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663210

Keywords

Navigation