Skip to main content
Log in

Abstract

The transport of hydrogen isotopes in solids is an important problem for a series of applications, in particular, for future thermonuclear reactors. The main processes determining transport are the diffusion of dissolved hydrogen and its interaction with lattice defects. It is known that vacancies in a metal can capture not only one hydrogen atom, but several at the same time. General equations describing hydrogen transport in this case are presented. Special attention is focused on the influence of this effect on the thermal desorption spectra. An experimental scheme making it possible to establish the capture of several atoms to traps is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Loarer, J. Nucl. Mater. 390–391, 20 (2009).

    Article  Google Scholar 

  2. R. A. Causey, J. Nucl. Mater. 300, 91 (2002).

    Article  Google Scholar 

  3. J. R. Fransens, M. S. A. El Keriem, and F. Pleiter, J. Phys.: Condens. Matter 3, 9871 (1991).

    Google Scholar 

  4. G.-H. Lu, H.-B. Zhou, and C. S. Becquart, Nucl. Fusion 54, 086001 (2014).

    Article  Google Scholar 

  5. K. Ohsawa, J. Goto, M. Yamakami, M. Yamaguchi, and M. Yagi, Phys. Rev. B: Condens. Matter Mater. Phys. 82, 184110 (2010).

    Article  Google Scholar 

  6. K. Heinola, T. Ahlgren, K. Nordlund, and J. Keinonen, Phys. Rev. B: Condens. Matter Mater. Phys. 82, 094102 (2010).

    Article  Google Scholar 

  7. B. L. Doyle, W. R. Wampler, D. K. Brice, and S. T. Picraux, J. Nucl. Mater. 93–94, 551 (1980).

    Article  Google Scholar 

  8. J. Roth, T. Schwarz-Selinger, V. K. Alimov, and E. Markina, J. Nucl. Mater. 432, 341 (2013).

    Article  Google Scholar 

  9. K. Schmid, U. Toussaint, and T. Schwarz-Selinger, J. Appl. Phys. 116, 134901 (2014).

    Article  Google Scholar 

  10. A. A. Airapetov, L. B. Begrambekov, S. V. Vergazov, A. A. Kuzmin, O. C. Fadina, and P. A. Shigin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4 (4), 667 (2010).

    Article  Google Scholar 

  11. N. Yu. Svechnikov, V. G. Stankevich, L. P. Sukhanov, K. A. Men’shikov, A. M. Lebedev, B. N. Kolbasov, Ya. V. Zubavichus, and D. Radzharatnam, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3 (3), 420 (2009).

    Article  Google Scholar 

  12. J. Guterl, R. D. Smirnov, and S. I. Krasheninnikov, J. Appl. Phys. 118, 043302 (2015).

    Article  Google Scholar 

  13. M. J. Baldwin, T. Schwarz-Selinger, J. H. Yu, and R. P. Doerner, J. Nucl. Mater. 438, 967 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Marenkov.

Additional information

Original Russian Text © E.D. Marenkov, S.I. Krasheninnikov, Y.M. Gasparyan, 2016, published in Poverkhnost’, 2016, No. 12, pp. 22–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marenkov, E.D., Krasheninnikov, S.I. & Gasparyan, Y.M. Effect of multisite traps on hydrogen transport in solids. J. Surf. Investig. 10, 1208–1213 (2016). https://doi.org/10.1134/S1027451016050785

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016050785

Keywords

Navigation