Skip to main content
Log in

Effect of strain rate on the flow stress of three liquid phase sintered tungsten alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Stress/strain tests were carried out in compression on three liquid phase sintered tungsten alloys, with tungsten contents of 90, 95, and 97.4 wt pct, in the strain rate range 10−3 s−1 to 103 s−1. Each alloy shows a gradual increase of flow stress with strain rate, and evidence of work softening is observed when the strain rate is of the order of 2 s−1 or greater. The work softening effect is shown to result from a temperature rise due to the plastic deformation and partly masks the strain rate effect at strains greater than 0.1. The 97.4 pct tungsten alloy also shows variable behavior due to cracking associated with the presence of a brittle phase at the tungsten particle/matrix interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Holzer:Trans. ASME J. Engng. Mats. & Tech., 1979, vol. 101, p. 231.

    CAS  Google Scholar 

  2. K. Bitans and P.W. Whitton:Int. Met. Rev., 1972, vol. 17, p. 66.

    Google Scholar 

  3. J. D. Campbell:Mats. Sci. & Engng., 1973, vol. 12, p. 3.

    Article  CAS  Google Scholar 

  4. J. Duffy: “The Dynamic Plastic Deformation of Metals: A Review”, Air Force Wright Aeronautical Laboratories Technical Report, AFWAL-TR-82-4024, Oct. 1982.

  5. G. R. Johnson, J. M. Hoegfeldt, U. S. Lindholm, and A. Nagy:Trans. ASME, J. Engng. Mats. & Tech., 1983, vol. 105, p. 48.

    Google Scholar 

  6. G. R. Johnson and U. S. Lindholm: in “Material Behavior under High Stress and Ultrahigh Loading Rates”, J. Mescall and V. Weiss, eds., Plenum Press, New York, NY, 1983, p. 61.

    Google Scholar 

  7. T. W. Penrice: in “Powder Metallurgy in Defense Technology,” Proc. of 1979 Powder Metallurgy in Defense Technology Seminar, Yuma, AZ, Metal Powder Industries Federation, Princeton, NJ, 1980, vol. 5, p. 11.

    Google Scholar 

  8. D. V. Edmonds and P. N. Jones:Metall. Trans. A, 1979, vol. 10A, p. 289.

    CAS  Google Scholar 

  9. B. C. Muddle:Metall. Trans. A, 1984, vol. 15A, p. 1089.

    CAS  Google Scholar 

  10. R. L. Woodward:Metall. Trans. A, 1977, vol. 8A, p. 1833.

    CAS  Google Scholar 

  11. U. S. Lindholm, A. Nagy, G. R. Johnson, and J. M. Hoegfeldt:Trans. ASME J. Engng. Mats. & Tech., 1980, vol. 102, p. 376.

    CAS  Google Scholar 

  12. R. L. Woodward and R. H. Brown:Proc. Instn. Mech. Engrs., 1975, vol. 189, p. 107.

    Google Scholar 

  13. A. Holzer: 8th North American Metalworking Research Congress, Univ. of Missouri, Rolla, MO, May 1980, SME, p. 110.

  14. R.Papirno, J.F. Mescall, and A.M.Hansen: in “Compression Testing of Homogeneous Materials and Composites”, ASTM STP 808, R. Chait and R. Papirno, eds., American Society for Testing and Materials, 1983, p. 40.

  15. A. Nadai:Theory of Flow and Fracture of Solids, 2nd ed., McGraw- Hill, New York, NY, 1950, vol. 1, p. 309.

    Google Scholar 

  16. E. O. Hall:Yield Point Phenomenon in Metals and Alloys, Macmillan, London, 1970, p. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodward, R.L., Baldwin, N.J., Burch, I. et al. Effect of strain rate on the flow stress of three liquid phase sintered tungsten alloys. Metall Trans A 16, 2031–2037 (1985). https://doi.org/10.1007/BF02662404

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662404

Keywords

Navigation