Skip to main content
Log in

Metal-ceramic composites based on the Ti-B-Cu porosity system

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A systematic study of the microstructure/fracture toughness/processing correlation of metal-ceramic composites in the Ti-B-Cu porosity system is presented. The composites are produced by the combustion synthesis process. Fracture surfaces indicate both ductile and brittle regions. The composites are made up of Ti as the only ductile phase and TiB, TiB2, Ti2Cu, and Ti3Cu4 as brittle phases. Density measurements and scanning electron microscopy (SEM) indicate that the samples contain distributed porosity. Ductile phase toughening is responsible for the increase in fracture toughness to a maximum value of 9.9 MPa(m)1/2. Samples with large amounts of porosity do not benefit from this toughening process even though they containin situ formed whiskers. The fracture toughness of the composite is modeled by considering the additive influence of the ductile phase reinforcement (Ashby model) and the residual porosity (exponential model). Microstructural constants required for the model are evaluated from the comparison. A correlation between the mechanical properties and the combustion temperature is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.T. Buljan, A.E. Pasto, and H.J. Kim:Am. Ceram. Soc. Bull., 1989, vol. 68, pp. 387–94.

    CAS  Google Scholar 

  2. J.J. Mecholsky:Am. Ceram. Soc. Bull., 1989, vol. 68, pp. 367–75.

    CAS  Google Scholar 

  3. T.I. Mah, M.G. Mendiratta, A.P. Katz, and K.S. Mazdiyasni:Am. Ceram. Soc. Bull., 1987, vol. 66, pp. 304–08.

    CAS  Google Scholar 

  4. J.L. Chermant and F. Osterstock:J. Mater. Sci., 1976, vol. 11, pp. 1939–51.

    Article  CAS  Google Scholar 

  5. M.S. Newkirk, A.W. Urquhart, H.R. Zwicker, and E. Breval:J. Mater. Res., 1986, vol. 1, pp. 81–89.

    CAS  Google Scholar 

  6. T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker:Binary Alloy Phase Diagrams, 1986, vol. 1, p. 392.

    Google Scholar 

  7. H.C. Yi and J.J. Moore:J. Mater. Sci. Lett., 1989, vol. 8, pp. 1182–84;J. Mater. Sci., 1989, vol. 24, pp. 3449-55;J. Mater. Sci., 1989, vol. 24, pp. 3456-62;J. Mater. Sci., 1990, vol. 25, pp. 1159-68;J. Met., 1990, vol. 42 (8), pp. 31-35.

    Article  CAS  Google Scholar 

  8. Z.A. Munir:Am. Ceram. Soc. Bull., 1988, vol. 67, pp. 342–49.

    CAS  Google Scholar 

  9. S.D. Dunmead, D.W. Readey, C.E. Semler, and J.B. Holt:J. Am. Ceram. Soc., 1989, vol. 72, pp. 2318–24.

    Article  CAS  Google Scholar 

  10. J.B. Holt, D.D. Kingman, and G.M. Bianchini:Mater. Sci. Eng., 1985, vol. 71, pp. 321–27.

    Article  CAS  Google Scholar 

  11. Y. Ouabdesselam and Z.A. Munir:J. Mater. Sci., 1987, vol. 22, pp. 1799–1807.

    Article  CAS  Google Scholar 

  12. J.B. Holt and Z.A. Munir:J. Mater. Sci., 1986, vol. 21, pp. 251–59.

    Article  CAS  Google Scholar 

  13. C.T. Ho and J.A. Sekhar: inHigh Temperature Ordered Inter- metallic Alloys IV, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., MRS, Pittsburgh, PA, 1991, pp. 1057–62.

    Google Scholar 

  14. J. Subrahmanyan, M. Vijaykumar, and S. Ranganath:Met. Mater. Proc., 1989, vol. 1, p. 105.

    Google Scholar 

  15. R.W. Rice, J.R. Spann, D. Lewis, and W. Coblenz:Ceram. Eng. Sci. Proc, 1984, vol. 5, pp. 614–24.

    CAS  Google Scholar 

  16. A.J. Caputo, W.J. Lackey, and D.P. Stinton:Ceram. Eng. Sci. Proc., 1985, vol. 6, pp. 694–706.

    Article  CAS  Google Scholar 

  17. C.T. Forwood and A.J. Forty:Phil. Mag., 1965, vol. 11, pp. 1067–82.

    CAS  Google Scholar 

  18. C.O. McHugh, T.J. Whalen, and M. Humenik:J. Am. Ceram. Soc., 1966, vol. 49, pp. 486–91.

    Article  CAS  Google Scholar 

  19. P. Hing and G.W. Groves:J. Mater. Sci., 1972, vol. 7, pp. 427–34.

    Article  CAS  Google Scholar 

  20. M.A. Stett and R.M. Fulrath:J. Am. Ceram. Soc., 1968, vol. 51, pp. 599–600.

    Article  CAS  Google Scholar 

  21. Y. Nivas and R.M. Fulrath:J. Am. Ceram. Soc., 1970, vol. 53, pp. 188–91.

    Article  CAS  Google Scholar 

  22. D.T. Rankin, J.J. Stiglich, D.R. Petrak, and R. Ruh:J. Am. Ceram. Soc., 1971, vol. 54, pp. 277–81.

    Article  CAS  Google Scholar 

  23. A.V. Virkar and D.L. Johnson:J. Am. Ceram. Soc., 1977, vol. 60, pp. 514–19.

    Article  CAS  Google Scholar 

  24. M.I. Mendelson and M.F. Fine:J. Am. Ceram. Soc., 1974, vol. 57, pp. 154–59.

    Article  CAS  Google Scholar 

  25. D.J. Green and P.S. Nicholson: inFracture Mechanics of Ceramics, Vol. 4, R.C. Bradt, D.P.H. Hasselman, and F.F. Lange, eds., Plenum Publishing Corp., New York, NY, 1974, pp. 945–60.

    Google Scholar 

  26. A.K. Khaund and P.S. Nicholson:J. Mater. Sci., 1980, vol. 15, pp. 177–87.

    Article  CAS  Google Scholar 

  27. V.V. Krstic, P.S. Nicholson, and R.G. Hoagland:J. Am. Ceram. Soc., 1981, vol. 64, pp. 499–504.

    Article  CAS  Google Scholar 

  28. J.J. Mecholsky, T.L. Jessen, and R.H. Moore:Ceram. Eng. Sci. Proc, 1985, vol. 6, pp. 657–62.

    CAS  Google Scholar 

  29. C.K. Elliott, G.R. Odette, G.E. Lucas, and J.W. Sheckherd: inHigh-Temperature/High Performance Composites, F.D. Lemkey, A.G. Evans, S.G. Fishman, and J.R. Strife, eds., MRS, Pittsburgh, PA, 1988, pp. 95–101.

    Google Scholar 

  30. J.J. Lewandowski, D. Dimiduk, W. Kerr, and M.G. Mendiratta: inHigh-Temperature/High Performance Composites, F.D. Lemkey, A.G. Evans, S.G. Fishman, and J.R. Strife, eds., MRS, Pittsburgh, PA, 1988, pp. 103–09.

    Google Scholar 

  31. M.F. Ashby, F.J. Blunt, and M. Bannister:Acta Metall., 1989, vol. 37, pp. 1847–57.

    Article  CAS  Google Scholar 

  32. H.C. Cao, B.J. Dalgleish, H.E. Deve, C. Elliott, A.G. Evans, R. Mehrabian, and G.R. Odette:Acta Metall., 1989, vol. 37, pp. 2969–77.

    Article  CAS  Google Scholar 

  33. A.G. Evans, A.H. Heuer, and D.L. Porter: inFracture 1977, D.M.R. Taplin, ed., University of Waterloo Press, Waterloo, Canada, 1977, vol. I, pp. 529–53.

    Google Scholar 

  34. A.G. Evans and R.M. McMeeking:Acta Metall., 1986, vol. 34, pp. 2435–41.

    Article  Google Scholar 

  35. K. Kendall, A.J. Howard, and J.D. Birchall:Phil. Trans. R. Soc. London, 1983, vol. A310, p. 139.

    Article  Google Scholar 

  36. R.W. Rice, S.W. Freiman, R.C. Pohanka, J.J. Melcholsky, and C.C. Wu: inFracture Mechanics of Ceramics, Vol. 4, R.C. Bradt, D.P.H. Hasselman, and F.F. Lange, eds., Plenum Publishing Corp., New York, NY, 1974, pp. 849–76.

    Google Scholar 

  37. Y.W. Mai and B. Cotterell:Cement Concrete Res., 1985, vol. 15, pp. 995–1002.

    Article  Google Scholar 

  38. Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1989, vol. 15.02, pp. 109–110.

  39. G.K. Bansal and W.H. Duckworth: inFracture Mechanics Applied to Brittle Materials, S.W. Freiman, ed., ASTM, Philadelphia, PA, 1978, pp. 38–46.

    Google Scholar 

  40. I. Barin, O. Knacke, and O. Kubaschewski:Thermochemical Properties of Inorganic Substances, Springer-Verlag, New York, NY, 1973, pp. 791–92.

    Google Scholar 

  41. M.E. Hyman, C. McCullough, J.J. Valencia, C.G. Levi, and R. Mehrabian:Metall. Trans. A., 1989, vol. 20A, pp. 1847–59.

    CAS  Google Scholar 

  42. R.A. Andrievskii, A.T. Pak, and I.F. Baiman:Sov. Powder Metall. Metal Ceram., 1989, vol. 28, pp. 669–71.

    Article  Google Scholar 

  43. H.R. Baumgartner and R.A. Steiger:J. Am. Ceram. Soc., 1984, vol. 67, pp. 207–12.

    Article  CAS  Google Scholar 

  44. F.D. Gac and J.J. Petrovic:J. Am. Ceram. Soc., 1985, vol. 68, pp. C.200–01.

    Article  Google Scholar 

  45. O. Vardar, I. Finnie, D.R. Biswas, and R.M. Fulrath:Int. J. Fracture, 1977, vol. 13, pp. 215–23.

    Article  CAS  Google Scholar 

  46. P.F. Becher, C.H. Hsueh, P. Angelini, and T.N. Tiegs:J. Am. Ceram. Soc., 1988, vol. 71, pp. 1050–61.

    Article  CAS  Google Scholar 

  47. P. Villars and L.D. Calvert:Pearson’s Handbook of Crystallo- graphic Data for Intermetallic Phases, Vol. 2, ASM, Metals Park, OH, 1985, pp. 2036–37.

    Google Scholar 

  48. Guide to Materials Engineering Data and Information, ASM INTERNATIONAL, Metals Park, OH, 1986, p. 2.10.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Materials Science and Engineering, University of Cincinnati

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H.P., Bhaduri, S.B. & Sekhar, J.A. Metal-ceramic composites based on the Ti-B-Cu porosity system. Metall Trans A 23, 251–261 (1992). https://doi.org/10.1007/BF02660869

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660869

Keywords

Navigation