Skip to main content
Log in

Palladium- catalyzed hydrogenation of soybean oil

  • Published:
Journal of the American Oil Chemists’ Society

ABSTRACT

The hydrogenation of soybean oil has been studied using charcoal-supported palladium catalysts at hydrogen pressures between ambient and 70 psig and at temperatures between 80 C and 160 C in three types of stirred reactor. The catalysts employed were 1-10% w/w Pd supported on charcoal and represented differing metal placement on the support. The structure of the catalysts was confirmed by metal surface area measurements, transmission electron microscopy (TEM) and electron spectroscopy for chemical analysis (ESCA). Comparative studies also were carried out under similar conditions using samples of commercial nickel catalysts. Palladium catalysts with the metal placed on the exterior of the charcoal support were the most active and selective at ambient pressure, and although palladium catalysts with metal placed within the charcoal pore system became the most active at higher hydrogen pressures, only the former type of catalyst retained high selec-tivity over the whole temperature and pressure range. Palladium catalysts gave rise to moretrans- acids than nickel, particularly under conditions normally em-ployed with the latter, but if diffusion limitation was avoided, especially at lower temperatures, palladium gave lower quantities oftrans- acid than nickel. In addition, the selectivity of a well designed palladium catalyst was superior to that of nickel and its activity was 15-20 times greater. It is concluded that if palladium is deposited on the exterior of the charcoal so that it is accessible to the triglyceride molecules, then its selectivity and activity is superior to that of nickel, even at low temperatures, at which nickel is inactive. This underlines the importance of choosing the correct preparative route to give optimum metal placement, and it is suggested that when previous studies have indicated that palladium is unselective for fat hardening, it is likely that the metal was not dispersed on the exterior surface of the support. Furthermore, whereas nickel is best used under diffusion-controlled conditions because its selectivity is better in the latter situation palladium should be used under diffusion-free conditions, which implies that very careful attention should be paid to the reactor design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Catalysis,” Edited by P.H. Emmett, Vol. III, 1955.

  2. “Catalysis by Metals,” Edited by G.C. Bond, Academic Press, London, New York, 1962.

  3. Zajcew, M., JAOCS 37:11 (1960).

    Article  CAS  Google Scholar 

  4. Rylander, P.N.,Ibid. 47:482 (1970).

    Article  CAS  Google Scholar 

  5. Coenan, J.W.E., Ibid. 53:382 (1976).

    Article  Google Scholar 

  6. van der Plank, P., B.G. Linsen, and H.J. van der Berg, Proc. 2nd Int. Symp. on Chemical Reaction Engineering B6-21 Amster- dam, (1972).

  7. Coenan, J.W.E., H. Boerma, B.G. Linsen, and B. de Vries, Proc. 3rd Int. Congr. Catal. Amsterdam, 2:1378 (1964).

    Google Scholar 

  8. van Hardeveld, R., and F. Hartog, Adv. Catal. 22:75 (1972).

  9. Acres, G.J.K., and B.J. Cooper, J. Appl. Chem. Biotechnol. 22:769 (1972).

    Article  CAS  Google Scholar 

  10. C.N. Satterfield, “Mass Transfer in Heterogeneous Catalysis,” M.I.T. Press, 1970, pp 107–128.

  11. Wisniak, and L.F. Albright, Ind. Eng. Chem. 53:375 (1961).

    Article  CAS  Google Scholar 

  12. Andersson, K., M. Hell, L. Löwendahl, and N-H Schöön, JAOCS 51:171 (1974).

    Article  CAS  Google Scholar 

  13. Wisniak, J., and S. Stein, Ibid. 51:482 (1974).

    Article  CAS  Google Scholar 

  14. Chung, C.S., and J.M. Winterbottom, (Unpublished results).

  15. T.N.O. - Central Institute for Nutrition and Food Research, Zeist, Holland.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ahmad, M.M., Priestley, T.M. & Winterbottom, J.M. Palladium- catalyzed hydrogenation of soybean oil. J Am Oil Chem Soc 56, 571–577 (1979). https://doi.org/10.1007/BF02660237

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660237

Keywords

Navigation