Skip to main content
Log in

Mössbauer Effect Studies of Tempered Martensite

  • Symposium on Tempering of Steel
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The57Fe Mössbauer effect has been widely used to trace the tempering of Fe-C and Fe-N martensitic systems, and has provided much detailed information on the interstitial atom configurations formed during these processes. Carbon and nitrogen atoms are found predominantly to occupy octahedral interstitial positions in the virgin martensite structure. During aging at room temperature, the interstitial atoms tend to agglomerate to regions of high carbon or nitrogen content. Carbon atoms are believed to cluster by jumping from tetrahedral interstitial sites and/or forming regions of ordered Fe4C. Nitrogen atoms agglomerate to regions of ordered Fe16N2. On tempering above room temperature, the sequential precipitation of the ε or η, χ and θ carbides is observed in Fe-C systems. The α′’ (Fe16N2) and γ′ (Fe4N) nitrides are observed during the decomposition of Fe-N martensite. Mössbauer hyperfine spectra associated with each of these structures are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Wertheim:Mössbauer Effect: Principles and Applications, Academic Press, New York, NY, 1964, and V. I. Goldanskii and R. H. Herber:Chemical Applications of Mössbauer Spectroscopy, Academic Press, New York, NY, 1968.

    Google Scholar 

  2. U. Gonser:Introduction to Mössbauer Spectroscopy, Plenum Press, New York, NY, 1971, ch. 8, and F.E. Fujita:Topics in Applied Physics: Mössbauer Spectroscopy, Springer-Verlag, Berlin and New York, NY, 1975, vol. 5.

    Google Scholar 

  3. M. Ron:Applications of Mössbauer Spectroscopy, Academic Press, New York, NY, 1980, vol. II, ch. 7.

  4. G. R. Speich and W. C. Leslie:Metall. Trans., 1972, vol. 3, p. 1043.

    Article  CAS  Google Scholar 

  5. M. Cohen:Trans. TMS-AIME, 1962, vol. 224, p. 638.

    CAS  Google Scholar 

  6. P.G. Winchell and M. Cohen:Trans. ASM, 1962, vol. 55, p. 347.

    CAS  Google Scholar 

  7. Y. Koval, I. Titov, and L. Khandros:Fiz. Met. Metallov., 1969, vol. 27, p. 65.

    Google Scholar 

  8. H. Marquis, A. Dube, and G. Letender:Mem. Sci. Rev. Metall., 1962, vol. 59, p. 119.

    CAS  Google Scholar 

  9. V. E. Schmidtmann, L. M. Hongardy, and H. Schenck:Arch. Eisenhuttenwes, 1965, vol. 36, p. 191.

    CAS  Google Scholar 

  10. W.C. Leslie:Acta Met., 1961, vol. 9, p. 1004.

    Article  CAS  Google Scholar 

  11. R.S. Keh and W.C. Leslie:Mat. Sci. Res., 1963, vol. 1, p. 208.

    CAS  Google Scholar 

  12. R. H. Doremus and E. F. Koch:Trans. TMS-AIME, 1960, vol. 218, p. 591.

    CAS  Google Scholar 

  13. Ph. Dünner and S. Müller:Acta Met., 1965, vol. 13, p. 25.

    Article  Google Scholar 

  14. L. S. Palatnik and S.W. Boronin:Fiz. Met. Metallov., 1966, vol. 21, p. 217.

    CAS  Google Scholar 

  15. J. M. Genin and P. A. Flinn:Phys. Lett., 1966, vol. 22, p. 392.

    Article  CAS  Google Scholar 

  16. B.W. ChristandP.M. Giles:Mössbauer Effect Methodology, Plenum Press, New York, NY, 1967, vol. 13, p. 37.

    Google Scholar 

  17. P. M. Gielen and R. Kaplow:Acta Met., 1967, vol. 15, p. 49.

    Article  CAS  Google Scholar 

  18. M. Ron, S. Niedzwiedz, A. Kirdon, and H. Schechter:J. Appl. Phys., 1967, vol. 38, p. 590.

    Article  CAS  Google Scholar 

  19. H. Ino, T. Moriya, F. E. Fujita, and Y. Maeda:J. Phys. Soc. Jpn., 1967, vol. 22, p. 346.

    Article  CAS  Google Scholar 

  20. H. Ino, T. Moriya, F. E. Fujita, Y. Maeda, Y. Ono, and Y. Inokuti:J. Phys. Soc. Jpn., 1968, vol. 25, p. 88.

    Article  CAS  Google Scholar 

  21. T. Moriya, H. Ino, F. E. Fujita, and Y. Maeda:J. Phys. Soc. Jpn., 1968, vol. 24, p. 60.

    Article  CAS  Google Scholar 

  22. F. E. Fujita, T. Moriya, and H. Ino:Trans. Iron SteelInst. Jpn., 1971, vol. 11, p. 1273.

    Google Scholar 

  23. L. Lysak and Y. Vovk:Fiz. Met. Metallov, 1965, vol. 20, p. 540.

    CAS  Google Scholar 

  24. N. DeCristofaro and R. Kaplow:Metall. Trans. A, 1977, vol. 8A, p. 35.

    CAS  Google Scholar 

  25. W.N. Gridnyev, W.G. Gavrelyuk, W.W. Nemoshkalyenko, Yu.A. Polyushkin, and O. N. Rasumov:Fiz. Met. Metallov., 1977, vol. 43, p. 582.

    Google Scholar 

  26. M.C. Cadeville, J.M. Friedt, and C. Lerner:J. Phys. F, 1977, vol. 7, p. 123.

    Article  CAS  Google Scholar 

  27. M. Lesoille and P.M. Gielen:Metall. Trans. A, 1972, vol. 3, p. 2681.

    Article  CAS  Google Scholar 

  28. F. Fujita:Metall. Trans. A, 1977, vol. 8A, p. 1727.

    CAS  Google Scholar 

  29. H. Ino and T. Ito:J. Phys. Colloq. C2, 1979, vol. 40, p. 644.

    Google Scholar 

  30. W. K. Choo and R. Kaplow:Acta Met., 1973, vol. 21, p. 725.

    Article  CAS  Google Scholar 

  31. H. Ino, T. Ito, S. Nasu, and U. Gonser:Acta Met., 1982, vol. 30, p. 9.

    Article  CAS  Google Scholar 

  32. J. M. Genin and P. A. Flinn:Trans. TMS-AIME, 1968, vol. 242, p. 1419.

    CAS  Google Scholar 

  33. N. DeCristofaro, R. Kaplow, and W.S. Owen:Metall. Trans. A, 1978, vol. 9A, p. 821.

    CAS  Google Scholar 

  34. A. K. Sachdev: Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1977.

    Google Scholar 

  35. M. K. Miller, P. A. Beaven, and G. D. W. Smith:Metall. Trans. A, 1981, vol. 12A, p. 1197.

    Google Scholar 

  36. K. H. Jack:J. Iron Steel Inst., 1951, vol. 169, p. 26.

    CAS  Google Scholar 

  37. W.N. Gridnyev and Yu. Petrov:Fiz. Met. Metallov., 1962, vol. 13, p. 686.

    Google Scholar 

  38. R. Ruhl and M. Cohen:Trans. TMS-AIME, 1969, vol. 245, p. 241.

    CAS  Google Scholar 

  39. M. G.H.Wells:Acta Met., 1964, vol. 12, p. 389.

    Article  Google Scholar 

  40. Y. Hirotsu and S. Nagakura:Acta Met., 1972, vol. 20, p. 645.

    Article  CAS  Google Scholar 

  41. D. L. Williamson, K. Nakazawa, and G. Krauss:Metall. Trans. A, 1979, vol. 10A, p. 1351. (Corrections inMetall. Trans. A, 1980, vol. 11A, p. 207.)

    CAS  Google Scholar 

  42. Yu. V. Maksimov, I. P. Sudalev, I. P. Arents, and S. M. Loktev:Kinet. Catal., 1974, vol. 15, p. 1144.

    Google Scholar 

  43. Z. Mathalone, M. Ron.J. Pipman, and S. Nadiv:J. Appl. Phy., 1974, vol. 42, p. 687.

    Article  Google Scholar 

  44. G. LeCaer, A. Simon, A. Lorenzo, and J. M. Genin:Phys. Stat. Solidi(a), 1971, vol. 6, p. K97.

    Article  CAS  Google Scholar 

  45. H. Bernas, I. A. Campbell, and R. Fruchart:J. Phys. Chem. Solids, 1967, vol. 28, p. 17.

    Article  CAS  Google Scholar 

  46. G. LeCaer, J.M. Dubois, and J.P. Senateur:J. Solid State Chem., 1976, vol. 19, p. 19.

    Article  CAS  Google Scholar 

  47. M. Ron, H. Schechter, and S. Niedzwiedz:J. Appl. Phys., 1968, vol. 39, p. 265.

    Article  CAS  Google Scholar 

  48. M. Ron and Z. Mathalone:Phys. Rev. B, 1971, vol. 4, p. 774.

    Article  Google Scholar 

  49. T. Shinjo, F. Itoh, H. Takaki, Y. Nakamura, and N. Skikazono:J. Phys. Soc. Jpn., 1964, vol. 19, p. 1252.

    Article  CAS  Google Scholar 

  50. H. Lipson and N.J. Petch:J. Iron Steel Inst., 1940, vol. 142, p. 95.

    Google Scholar 

  51. K.H. Jack:Proc. Roy. Soc. London, 1951, vol. 208A, p. 216.

    Google Scholar 

  52. R.D. Gerwood and G. Thomas:Metall. Trans., 1973, vol. 4, p. 225.

    Google Scholar 

  53. T. Moriya, Y. Sumitomo, H. Ino, F. Fujita, and Y. Maeda:J. Phys. Soc. Jpn., 1973, vol. 35, p. 1378.

    Article  CAS  Google Scholar 

  54. J. Bainbridge, R.A. Channing, W.H. Whitlow, and R. E. Pend:J. Phys. Chem. Solids, 1973, vol. 34, p. 1579.

    Article  CAS  Google Scholar 

  55. K.H. Jack:Proc. Roy. Soc. London, 1948, vol. 195A, p. 56.

    Google Scholar 

  56. G. Shirane, W.J. Takei, and S. Ruby:Phys. Rev., 1962, vol. 126, p. 49.

    Article  CAS  Google Scholar 

  57. A.J. Nozik, J.C. Wood Jr., and G. Haacke:Solid State Comm., 1969, vol. 7, p. 1677.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Professor, Massachusetts Institute of Technology, Cambridge, MA 02139

This paper is based on a presentation made at the “Peter G. Winchell Symposium on Tempering of Steel” held at the Louisville Meeting of The Metallurgical Society of AIME, October 12-13, 1981, under the sponsorship of the TMS-AIME Ferrous Metallurgy and Heat Treatment Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplow, R., Ron, M. & DeCristofaro, N. Mössbauer Effect Studies of Tempered Martensite. Metall Trans A 14, 1135–1145 (1983). https://doi.org/10.1007/BF02659861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659861

Keywords

Navigation