Skip to main content
Log in

Calculation of weld metal composition change in high-power conduction mode carbon dioxide laser-welded stainless steels

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The use of high-power density laser beam for welding of many important alloys often leads to appreciable changes in the composition and properties of the weld metal. The main difficulties in the estimation of laser-induced vaporization rates and the resulting composition changes are the determination of the vapor condensation rates and the incorporation of the effect of the welding plasma in suppressing vaporization rates. In this article, a model is presented to predict the weld metal composition change during laser welding. The velocity and temperature fields in the weld pool are simulated through numerical solution of the Navier-Stokes equation and the equation of conservation of energy. The computed temperature fields are coupled with ve-locity distribution functions of the vapor molecules and the equations of conservation of mass, momentum, and the translational kinetic energy in the gas phase for the calculation of the evap-oration and the condensation rates. Results of carefully controlled physical modeling experi-ments are utilized to include the effect of plasma on the metal vaporization rate. The predicted area of cross section and the rates of vaporization are then used to compute the resulting com-position change. The calculated vaporization rates and the weld metal composition change for the welding of high-manganese 201 stainless steels are found to be in fair agreement with the corresponding experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Moon and E.A. Metzbower:Weld. J. Res. Suppl., 1983, vol. 62, pp. 53–58.

    Google Scholar 

  2. P.A.A. Khan and T. DebRoy:Metall. Trans. B, 1984, vol. 15B, pp. 641–44.

    Google Scholar 

  3. M.J. Cieslak and P.W. Fuerschbach:Metall. Trans. B, 1988, vol. 19B, pp. 319–29.

    CAS  Google Scholar 

  4. P.A.A. Khan, T. DebRoy, and S.A. David:Weld. J. Res. Suppl., 1988, vol. 67, pp. 1–7.

    Google Scholar 

  5. R. Miller and T. DebRoy:J. Appl. Phys., 1990, vol. 68, pp. 2045–50.

    Article  CAS  Google Scholar 

  6. M.M. Collur and T. DebRoy:Metall. Trans. B, 1989, vol. 20B, pp. 277–86.

    CAS  Google Scholar 

  7. G.J. Dunn, C.D. Allemand, and T.W. Eagar:Metall. Trans. A, 1986, vol. 17A, pp. 1851–63.

    CAS  Google Scholar 

  8. A. Block-Bolten and T.W. Eagar:Metall. Trans. B, 1984, vol. 15B, pp. 461–69.

    CAS  Google Scholar 

  9. P. Sahoo, M.M. Collur, and T. DebRoy:Metall. Trans. B, 1988, vol. 19B, pp. 967–72.

    CAS  Google Scholar 

  10. S.I. Anisimov and A. Kh. Rakhmatulina:Soviet Physics-JETP, 1973, vol. 37, pp. 441–44.

    Google Scholar 

  11. C.J. Knight:A1AA J., 1979, vol. 17, pp. 519–23.

    CAS  Google Scholar 

  12. P. Sahoo and T. DebRoy:Mater. Lett., 1988, vol. 6, pp. 406–08.

    Article  CAS  Google Scholar 

  13. C.L. Chan and J. Mazumdar:J. Appl. Phys., 1987, vol. 62, pp. 4579–86.

    Article  CAS  Google Scholar 

  14. T. DebRoy, S. Basu, and K. Mundra:J. Appl. Phys., 1991, vol. 70, pp. 1313–19.

    Article  CAS  Google Scholar 

  15. M.M. Collur, A. Paul, and T. DebRoy:Metall. Trans. B, 1987, vol. 18B, pp. 733–40.

    CAS  Google Scholar 

  16. P.A.A. Khan: Ph.D. Thesis, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 1987.

    Google Scholar 

  17. A. Paul and T. DebRoy:Metall. Trans. A, 1988, vol. 19B, pp. 851–58.

    CAS  Google Scholar 

  18. G.M. Oreper and J. Szekely:J. Fluid Mech., 1984, vol. 147, pp. 53–79.

    Article  Google Scholar 

  19. T. Zacharia, A.H. Eraslan, and D.K. Aidun:Weld. J. Res. Suppl., 1988, vol. 67, pp. 18–27.

    Google Scholar 

  20. T. Zacharia, S.A. David, and J.M. Vitek:Metall. Trans. B, 1991, vol. 22B, pp. 233–41.

    Article  CAS  Google Scholar 

  21. E.U. Schlunder and V. Gniclinski:Chem.-Ing.-Tech., 1967, vol. 39, pp. 578–84.

    Article  Google Scholar 

  22. S.I. Anisimov, A.M. Bonch-Bruevich, M.A. El'yashevich, Ya.A. Imas, N.A. Pavlenko, and G.S. Romanvov:Sov. Phys.— Tech. Phys., 1967, vol. 11, pp. 945–52.

    Google Scholar 

  23. F.W. Dabby and U. Paek:IEEE J. Quantum Electronics, 1972, vol. QE-8, pp. 106–11.

    Article  Google Scholar 

  24. M. von Allmen:Laser-Beam Interactions with Materials, Springer- Verlag, New York, NY, 1987, p. 161.

    Google Scholar 

  25. V.A. Batanov, F.V. Bunkin, A.M. Prokhorov, and V.B. Fedorov:Soviet Physics—JETP, 1973, vol. 36, pp. 311–22.

    Google Scholar 

  26. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy:Weld. J. Res. Suppl., 1989, vol. 68, pp. 499–509.

    Google Scholar 

  27. G. Emanuel:Gasdynamics: Theory and Applications, AIAA Education Series, New York, 1986.

    Google Scholar 

  28. W. Vincenti and C. Kruger:Introduction to Physical Gas Dynamics, Wiley, New York, NY, 1965.

    Google Scholar 

  29. R. Mehrabian, S. Kou, S.C. Hsu, and A. Munitz:AIP Conf. Proc, MRS, Boston, MA, 1978.

    Google Scholar 

  30. P. Sahoo, T. DebRoy, and M.J. McNallan:Metall. Trans. B, 1988, vol. 19B, pp. 483–91.

    CAS  Google Scholar 

  31. M.J. McNallan and T. DebRoy:Metall. Trans. B, 1991, vol. 22B, pp. 557–60.

    CAS  Google Scholar 

  32. T. Iida and R.L. Guthrie:The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1986, p. 8.

    Google Scholar 

  33. J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird:Molecular Theory of Gases and Liquids, John Wiley & Sons, Inc., New York, NY, 1954.

    Google Scholar 

  34. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman:Selected Values of the Thermodynamic Properties of the Elements, ASM, Metals Park, OH, 1973, pp. 6–7.

    Google Scholar 

  35. R.E. Honig and D.A. Kramer:Physicochemical Measurements in Metal Research, Interscience Publishers, New York, NY, 1970, vol. 4, pp. 505–17.

    Google Scholar 

  36. E.T. Turkdogan:Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mundra, K., Debroy, T. Calculation of weld metal composition change in high-power conduction mode carbon dioxide laser-welded stainless steels. Metall Trans B 24, 145–155 (1993). https://doi.org/10.1007/BF02657881

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657881

Keywords

Navigation