Skip to main content
Log in

Experimental and theoretical analysis of zinc updraft sintering

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The present work aims to improve the understanding of the fundamental physicochemical phenomena involved in the zinc updraft sinter-roasting process and to develop a mathematical simulation model. Laboratory and pilot pan experiments have been performed to investigate some of the phenomena important to the process, such as gas flow through the sintering bed, moisture removal, roasting reaction kinetics, melting, and solidification. The mathematical model of the sinter-roasting operation has been developed based on the results of these specific studies and the coupling of the physical phenomena. The basic principle of the model is to solve dif-ferential balances of heat, mass, and momentum transport (by an implicit finite difference method) using parameters specific to each zone of the sintering bed. From input data concerning the operating conditions and the raw materials characteristics, the model calculates the temperatures and compositions of the solids and gases throughout the bed. Simulated and experimental results obtained for an actual pilot pan are presented and compared. Manuscript submitted May 10, 1991.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Pérignon: Dr. Eng. Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 1982.

  2. M.J. Cumming and R.J. Batterham: inProc. 4th Biennial Conf. Simulation Society Australia, University of Queensland, Brisbane, Australia, 1980, pp. 108–19.

    Google Scholar 

  3. G.W. Healy:J. Met., 1981, vol. 33 (1), pp. 30–37.

    CAS  Google Scholar 

  4. H. Toda and K. Kato:Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 178–86.

    CAS  Google Scholar 

  5. M. Yoshinaga and T. Kubo:Sumitomo Search, 1978, vol. 20 (11), pp. 1–14.

    Google Scholar 

  6. F. Patisson, J.P. Bellot, D. Ablitzer, E. Marlière, C. Dulcy, and J.M. Steiler:Ironmaking and Steelmaking, 1991, vol. 18 (2), pp. 89–95.

    CAS  Google Scholar 

  7. J.P. Bellot:Doctoral Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 1990.

    Google Scholar 

  8. S. Ergun:Chem. Eng. Prog., 1952, vol. 48 (2), pp. 87–94.

    Google Scholar 

  9. J. Villermaux:Génie de la Réaction Chimique, Lavoisier, Paris, 1982, pp. 155-67.

  10. J. Villermaux and W.P. Swaaij:Chem. Eng. Sci., 1969, vol. 24, pp. 1097–1111.

    Article  CAS  Google Scholar 

  11. J.P. Bellot, F. Patisson, and D. Ablitzer: inProc. Rencontre Société Française des Thermiciens, '89, Nancy, France, SFT, Paris, 1989, pp. 183-94.

  12. F. Patisson, J.P. Bellot, and D. Ablitzer:Metall. Trans. B, 1990, vol. 21B, pp. 37–47.

    CAS  Google Scholar 

  13. I. Barin and O. Knacke:Thermochemical properties of inorganic substances, Springer-Verlag, Berlin, 1973 and Suppl. 1977.

    Google Scholar 

  14. W.E. Ranz:Chem. Eng. Prog., 1952, vol. 48, pp. 247–53.

    CAS  Google Scholar 

  15. D. Kunii and M. Suzuki:Int. J. Heat Mass Transfer, 1967, vol. 10, pp. 845–52.

    Article  CAS  Google Scholar 

  16. A. Allay: Dr. Sciences Physiques Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 1986.

    Google Scholar 

  17. M. Lemperle:Erzmetall., 1985, vol. 38, pp. 499–505.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellot, J.P., Patisson, F. & Ablitzer, D. Experimental and theoretical analysis of zinc updraft sintering. Metall Trans B 24, 27–38 (1993). https://doi.org/10.1007/BF02657869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657869

Keywords

Navigation