Skip to main content
Log in

Description of a nine-level grid point atmospheric general circulation model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A brief description of a nine-level grid-point global atmospheric general circulation model is presented with the emphasis on the physics parameterizations. This model was developed by the modeling group from Institute of Atmospheric Physics as one task of the CO2-Climate cooperation project between Chinese Academy of Sciences and United States Department of Energy. The task was initiated by Qing-Cun Zeng (IAP) and Robert D. Cess (SUNY). The operational design, computer coding and climate simulation tuning of the model were mainly carried out by Xue-Hong Zhang (for dynamics) and the author (for physics) in SUNY at Stony Brook. The final version was frozen in September 1990. Preliminary diagnoses showed that the model reproduces principal features of the observed climatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, B.A., V. Ramanathan, and A. Boville (1986), The effects of cumulus moisture transports on the simulation of climate with a general circulation model,J. Atmos. Sci.,43: 2443–2462.

    Article  Google Scholar 

  • Alexander, R.C., and R.L. Mobley (1976), Monthly average sea-surface temperatures and ice-pack limits on a 1° global grid,Mon. Wea. Rev.,104: 143–148.

    Article  Google Scholar 

  • Arakawa, A. (1972), Design of the UCLA general circulation model, Tech. Report No. 7, Department of Meteorology, University of California, Los Angeles, 116 pp.

    Google Scholar 

  • Arakawa, A., and W.H. Schubert (1974), Interaction of a cumulus cloud ensemble with the large scale environment, Part I,J. Atmos. Sci.,31: 674–701.

    Article  Google Scholar 

  • Boer, G.J., K.Arpe, M.Blackburn, M.Deque, W.L. Gates, T.L. Hart, H.le Treut, E.Roeckner, D.A. Sheinin, I. Simmonds, R.N.B. Smith, T.Tokioka, R.T. Wetherald and D.Williamson (1991),An Intercomparison of the Climates Simulated by 14 Atmospheric General Circulation Models, WMO/TD-No. 425, World Met. Organiz., Geneva, 37 pp.

  • Boer, G.J., A. McFarlane, R. Laprise, J.D. Henderson, and J.-P. Blanchet (1984), The Canadian Climate Centre spectral atmospheric general circulation model,Atmos.-Ocean,22: 397–429.

    Google Scholar 

  • Bourke, W. (1974), A multi-level spectral model, I: Formulation and hemispheric integrations,Mon. Wea. Rev.,102: 687–701.

    Article  Google Scholar 

  • Briegleb, B.P., P. Minnis, V. Ramanathan, and E. Harrison (1986), Comparison of regional clear-sky albedos inferred from satellite observations and model computations,J. Clim. Appl. Meteorol., 25: 214–226.

    Article  Google Scholar 

  • Briegleb, B., and V. Ramanathan (1982), Spectral and diurnal variations in clear sky planetary albedo,J. Appl. Meteorol.,21: 1160–1171.

    Article  Google Scholar 

  • Campbell, G.S. (1977), An Introduction to Environmental Biophysics, Springer-Verlag, 159 pp.

  • Clapp, R., and G. Hornberger (1978), Empirical equations for some soil hydraulic properties,Water Resour. Res.,14: 601–609.

    Google Scholar 

  • Cosby, B.J., G.M. Hornberger, R.B. Clapp, and T.R. Ginn (1984), A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils,Water Resour. Res.,20: 682–690.

    Google Scholar 

  • Deardoff, J.W. (1967), Dependence of the eddy coefficient for heat upon stability above the lowest 50 m,J. Appl. Meteorol.,6: 631–643.

    Article  Google Scholar 

  • Delage, Y. (1986), Surface temperature calculation in atmospheric circulation models with coarse resolution of the boundary layer,Mon. Wea. Rev.,114: 442–451.

    Article  Google Scholar 

  • Dickinson, R.E. (1983), Land surface processes and climate—Surface albedos and energy balance,Advances in Geophysics,25: 305–353.

    Google Scholar 

  • Dickinson, R.E. (1984), Modeling evaportranspiration for three-dimensional global climate models, In Climate Processes and Climate Sensitivity, J.E. Hansen and K. Takahashi (Eds.),Geophysical Monograph,29: pp 58–72.

    Google Scholar 

  • Dickinson, R.E., A. Henderson-Sellers, P.J. Kennedy, and M.F. Wilson (1986),Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model, NCAR Tech. Note, NCAR/TN-275+STR, National Center for Atmospheric Research, Boulder, CO.

  • Dyer, A.J., and E.F. Bradley (1982), An alternative analysis of flux-gradient relationships at the 1976 ITCE,Boundary -Layer Meteorol.,22: 3–19.

    Article  Google Scholar 

  • Hansen, J., Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis (1983), Efficient three-dimensional global models for climate studies: Models I and II,Mon. Wea. Rev.,111: 609–662.

    Article  Google Scholar 

  • Hanssen-Bauer, I., and Y.T. Gjessing (1988), Observations and model calculations of aerodynamic drag on sea ice in the Fram Strait,Tellus,40A: 151–161.

    Google Scholar 

  • Harshvardhan, D.A. Randall, T.G. Corsetti, and D.A. Dazlich (1989), Earth radiation budget and cloudiness simulations with a general circulation model,J. Atmos. Sci.,40: 1922–1942.

    Article  Google Scholar 

  • Hoestroem, U. (1985), Von Karman constant in atmospheric boundary layer flow: reevaluated,J. Atmos. Sci.,42: 263–270.

    Article  Google Scholar 

  • Jacobsen, I., and E. Heise (1982), A new economic method for the computation of the surface temperature in numerical models,Beitr. Phys. Atmosph.,55(2): 128–141.

    Google Scholar 

  • Jaeger, L. (1976), Montatskarten des Niederschlages fur die ganze Erde,Ber. Dlsch. Wetterienst,18: 38 pp.

    Google Scholar 

  • Joseph, D. (1980),Navy 10’ Global Elevation Values, NCAR Tech. Note, National Center for Atmospheric Research, Boulder, CO.

    Google Scholar 

  • Kiehl, J.T., and B.P. Briegleb (1991), A new parameterization of the absorptance due to the 15 micron band system of carbon dioxide,J. Geophys. Res.,96: 9013–9019.

    Google Scholar 

  • Kiehl, J.T., R.J. Wolski, B.P. Briegleb, and V. Ramanathan (1987),Documentation of radiation and cloud routines in the NCAR Community Climate Model (CCM1), NCAR Tech. Note, NCAR/ TN-288+1A, National Center for Atmospheric Research, Boulder, CO.

    Google Scholar 

  • Kiehl, J.T., and T. Yamanouchi (1985), A parameterization for absorption due to the A, B, and gamma oxygen bands,Tellus,37B: 1–6.

    Google Scholar 

  • Kondo, J. (1975), Air-sea bulk transfer coefficients in diabatic conditions,Boundary-Layer Meteorol,9: 91–112.

    Article  Google Scholar 

  • Kratz, D.P., and R.D. Cess (1985), Solar absorption by atmospheric water vapor: A comparison of radiation models,Tellus,37B: 53–63.

    Article  Google Scholar 

  • Lacis, A.A., and J.E. Hansen (1974), A parameterization for the absorption of solar radiation in the Earths atmosphere,J. Atmos. Sci.,31: 118–133.

    Article  Google Scholar 

  • Large, W.G., and S. Pond (1982), Sensible and latent heat flux measurement over ocean,J. Phys. Oceanogr.,12: 464–482.

    Article  Google Scholar 

  • Liang, X.-Z. (1986), The Design of IAP GCM and the Simulation of Climate and Its Interseasonal Variability,Ph.D. Dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 250 pp.

  • Liang, X.-Z. and W.-C. Wang (1995), A GCM study of the climatic effect of 1979-1992 ozone trend, InAtmospheric Ozone as a Climate Gas, NATO ASI Series, W.-C. Wang and I.S.A. Isaksen (Eds.), pp. 259-288.

  • Liang, X.-Z., W.-C. Wang, A. N. Samel, D. Pollard, and S.L. Thompson (1996), Systematic biases of SUNYA / NCAR AMIP simulations. InProceedings of First International AMIP Scientific Conference, WCRP Report (to appear).

  • Lord, S.J. (1978), Development and observational verification of a cumulus cloud parameterization,Ph.D Dissertation, University of California, Los Angeles, 339 pp.

    Google Scholar 

  • Lord, S.J., W.C. Chao, and A. Arakawa (1982), Interaction of a cumulus cloud ensemble with the large-scale environment, Part IV: The discrete model,J. Atmos. Sci.,39: 104–113.

    Article  Google Scholar 

  • Mahrt, L., and H.-L. Pan (1984), A two-layer model of soil hydrology,Boundary-Layer Meteorol.,29: 1–20.

    Article  Google Scholar 

  • Manabe, S., J. Smagorinsky, and R.F. Strickler (1965), Simulated climatology of a general circulation model with a hydrologic cycle,Mon. Wea. Rev.,93: 769–798.

    Article  Google Scholar 

  • Matthews, E. (1983), Global vegetation and land use: New high-resolution data bases for climate studies,J. Clim. Appl. Meteorol.,22: 474–487.

    Article  Google Scholar 

  • McCumber, M.C., and R.A. Pielke (1981), Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model, 1. Soil layer,J. Geophys. Res.,86: 9929–9938.

    Google Scholar 

  • Miyakoda, K., and J. Sirutis (1986), Manual of the E-Physics, [Available from the Geophysical Fluid Dynamics Laboratory, Princeton University, P.O. Box 308, Princeton, NJ 08542.]

    Google Scholar 

  • Nieuwstadt, F.T.M., and H. Tennekes (1981), A rate equation for the nocturnal boundary layer height,J. Atmos. Sci.,38: 1418–1428.

    Article  Google Scholar 

  • Noilhan, J., and S. Planton (1989), A simple parameterization of land surface processes for meteorological models,Mon. Wea. Rev.,117: 536–549.

    Article  Google Scholar 

  • Palmer, T.N., G.J. Shutts, and R. Swinbank (1986), Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization,Quart. J. Roy. Meter. Soc.,112: 1001–1039.

    Article  Google Scholar 

  • Pan, H.-L., and L. Mahrt (1987), Interaction between soil hydrology and boundary-layer development,Boundary-Layer Meteorol.,38: 185–202.

    Article  Google Scholar 

  • Philip, J.R. (1987), A physical bound on the Bowen ratio,J. Clim. Appl. Meteorol.,26: 1043–1045.

    Article  Google Scholar 

  • Priestley, C.H.B. (1959), Turbulent Transfer in the Lower Atmosphere, The University of Chicago Press, Chicago, IL, 130 pp.

    Google Scholar 

  • Ramanathan, V., and R.E. Dickinson (1979), The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the Earth—troposphere system,J. Atmos. Sci.,36: 1084–1104.

    Google Scholar 

  • Ramanathan, V., and P. Downey (1986), A nonisothermal emissivity and absorptivity formulation for water vapor,J. Geophys. Res.,91: 8649–8666.

    Google Scholar 

  • Ramanathan, V., E.J. Pitcher, R.C. Malone, and M.L. Blackmon (1983), The response of a spectral general circulation model to refinements in radiative processes,J. Atmos. Sci.,40: 605–630.

    Article  Google Scholar 

  • Sasamori, T., J. London, and D.V. Hoyt (1972), Radiation budget of the Southern Hemisphere,Meteorological Monographs,35, American Meteorological Society, Boston, MA, 9–22.

    Google Scholar 

  • Schlesinger, M.E., and J.-H. Oh (1988), A parameterization of the evaporation of rainfall,Mon. Wea. Rev.,116: 1887–1895.

    Article  Google Scholar 

  • Schutz, C., and W.L. Gates (1971), Global climate data for surface, 800 mb, 400 mb: January, R-915-ARPA, 173 pp.

  • Schutz, C., and W.L. Gates (1972), Global climate data for surface, 800 mb, 400 mb: July, R-1029-ARPA, 180 pp.

  • Slingo, J.M. (1987), The development and verification of a cloud prediction scheme for the ECMWF model,Quart. J. Roy. Meteor. Soc.,113: 899–927.

    Article  Google Scholar 

  • Smolarkiewicz, P.K., and W.W. Grabowski (1990), The multidimensional positive definite advection transport algorithm: Nonoscillatory option,J. Comput. Phys.,86: 355–375.

    Article  Google Scholar 

  • Trenberth, K.E. (1992),Global Analyses from ECMWF and Atlas of 1000 to 10 mb Circulation Statistics, NCAR Tech. Note, NCAR / TN-373+STR, National Center for Atmospheric Research, Boulder, CO., 191 pp.

    Google Scholar 

  • Trenberth, K.E., J.R. Christy, and J.G. Olson (1987), Global atmospheric mass, surface pressure, and water vapor variations,J. Geophys. Res.,92: 14815–14826.

    Article  Google Scholar 

  • Wetzel, P.J., and J.-T. Chang (1987), Concerning the relationship between evapotranspiration and soil moisture,J. Clim. Appl. Meteorol.,26: 18–27.

    Article  Google Scholar 

  • Wilson, M.F., and A. Henderson-Sellers (1985), A global archive of land cover and soils data for use in general circulation climate models,J. Climatol.,5: 119–143.

    Article  Google Scholar 

  • Wilson, M.F., A. Henderson-Sellers, R.E. Dickinson, and P.J. Kennedy (1987), Investigation of the sensitivity of the land-surface parameterization of the NCAR Community Climate Model in regions of tundra vegetation,J. Climatol.,7: 319–343.

    Article  Google Scholar 

  • Wu, J. (1980), Wind-stress coefficients over sea surface near neutral conditions —A revisit,J. Phys. Oceanogr.,10: 727–740.

    Article  Google Scholar 

  • Zeng, Q.-C. (1983), Some numerical ocean-atmosphere coupling models,In Proceedings of the First International Symposium on the Integrated Global Ocean Monitoring (Tallinn, USSR, October 2–10).

    Google Scholar 

  • Zeng, Q.-C, C.-G. Yuan, X.-H. Zhang, X.-Z. Liang and N. Bao (1987), A global grid-point general circulation model, In Collection of Papers Presented at the WMO / IUGG NWP Symposium (Tokyo, August 4–8, 1986), pp. 421-430.

  • Zeng, Q.-C, X.-H. Zhang, X.-Z. Liang, C.-G. Yuan and S.-F. Chen (1989), Documentation of IAP Two-Level Atmospheric General Circulation Model, DOE/ ER/ 60314-H1, TRO44, 383 pp.

  • Zhang, X.-H. (1990), Dynamical framework of IAP nine-level atmospheric general circulation model,Advances in Atmospheric Sciences,7(1): 66–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xinzhong, L. Description of a nine-level grid point atmospheric general circulation model. Adv. Atmos. Sci. 13, 269–298 (1996). https://doi.org/10.1007/BF02656847

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656847

key words

Navigation