Skip to main content
Log in

Rapid thermal annealing of si implanted gaas

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Rapid thermal annealing (RTA) technology offers potential advantages for GaAs MESFET device technology such as reducing dopant diffusion and minimizing the redistribution of background impurities. LEC semi-insulating GaAs substrates were implanted with Si at energies from 100 to 400 keV to doses from 1 × 1012 to 1 × 1014/cm2. The wafers were encapsulated with Si3N4 and then annealed at temperatures from 850-1000° C in a commercial RTA system. Wafers were also annealed using a conventional furnace cycle at 850° C to provide a comparison with the RTA wafers. These implanted layers were evaluated using capacitance-voltage and Hall effect measurements. In addition, FET’s were fabricated using selective implants that were annealed with either RTA or furnace cycles. The effects of anneal temperature and anneal time were determined. For a dose of 4 × 1012/cm2 at 150 keV with anneal times of 5 seconds at 850, 900, 950 and 1000° C the activation steadily increased in the peak of the implant with overlapping profiles in the tail of the profiles, showing that no significant diffusion occurs. In addition, the same activation could be obtained by adjusting the anneal times. A plot of the equivalent anneal times versus 1/T gives an activation energy of 2.3 eV. At a higher dose of 3 × 1013 an activation energy of 1.7 eV was obtained. For a dose of 4 × 1012 at 150 keV both the RTA and furnace annealing give similar activations with mobilities between 4700 and 5000 cm2/V-s. Mobilities decrease to 4000 at a dose of 1 × 1013 and to 2500 cm2/V-s at 1 × 1014/cm2. At doses above 1 × 1013 the RTA cycles gave better activation than furnace annealed wafers. The MESFET parameters for both RTA and furnace annealed wafers were nearly identical. The average gain and noise figure at 8 GHz were 7.5 and 2.0, respectively, for packaged die from either RTA or furnace annealed materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Pearton, J. M. Gibson, D. C. Jacobson, J. M. Poate, J. S. Williams, and D. O. Boerma, Materials Research Society Symposia Proceedings52, 351 (1986).

    CAS  Google Scholar 

  2. D. E. Davies, Nucl. Instrum. MethodsB7/8, 387 (1985).

    Google Scholar 

  3. M. Kuzuhara, H. Kohzu and Y. Takayama, in Energy Beam-Solid Interactions and Transient Thermal Processing, ed. J. C. C. Fan and N. M. Johnson, North-Holland, New York, 1984, pp.651–662.

    Google Scholar 

  4. M. Arai, K. Nishiyama and N. Watanabe, Jpn. J. Appl. Phys.20, 1124 (1981).

    Article  Google Scholar 

  5. R. L. Chapman, J. C. C. Fan, J. P. Donnelly and B-Y Tsaur, Appl. Phys. Lett.40, 305 (1985).

    Google Scholar 

  6. A. Cetronio, M. Bujatti, P. D'Eustacchio and S. Ciceroni, in Laser-Solid Interactions and Transient Thermal Processing of Materials, ed. J. Narayan, W. L. Brown and R. A. Lemons, North-Holland, New York, 1983, pp. 641–646.

    Google Scholar 

  7. J. S. Williams, in Laser-Solid Interactions and Transient Thermal Processing of Materials, ed. J. Narayan, W. L. Brown and R. A. Lemons, North-Holland, New York, 1983, pp. 621–632.

    Google Scholar 

  8. D. H. Rosenblatt, W. R. Hitchens, S. Shatas, A. Gat and D. A. Betts, in Energy Beam-Solid Interaction and Transient Thermal Processing, ed. J. C. C. Fan and N. M. Johnson, North-Holland, Amsterdam, 1984, pp. 669–674.

    Google Scholar 

  9. R. N. Legge and W. M. Paulson, in Proceedings of SPIE, Vol. 623, Advanced Processing and Characterization of Semiconductors III, ed. D. K. Sadana and M. I. Current, pp. 163-169.

  10. H. Kanber, R. J. Cipolli, W. B. Henderson and J. M. Whelan, J. Appl. Phys.57, 4732 (1985).

    Article  CAS  Google Scholar 

  11. S. G. Liu and S. Y. Narayan, J. Electron. Mater.13, 897 (1985).

    Google Scholar 

  12. M. Kuzuhara, H. Kohzu and Y. Kakayama, IEDM Technical Digest, p. 170 (1982).

  13. T. Hiramoto, Y. Mochizuke, T. Saito and T. Ikoma, Jpn. J. Appl. Phys.24, L921 (1985).

    Article  CAS  Google Scholar 

  14. P. M. Campbell, O. Aina and B. J. Baliga, J. Electron. Mater.15, 125 (1986).

    CAS  Google Scholar 

  15. K. V. Vaidyanathan and H. L. Dunlap, in Energy Beam-Solid Interactions and Transient Thermal Processing, Ed. J. C. C. Fan and N. M. Johnson, North-Holland, New York, 1984, pp. 675–679.

    Google Scholar 

  16. T. E. Kazior and K. Tabatabaie-Alavi, Materials Research Society Symposia Proceedings52, 397 (1986).

    CAS  Google Scholar 

  17. Y. J. Chan and M. S. Lin, J. Electron. Mater.15, 31, (1986).

    CAS  Google Scholar 

  18. S. J. Pearton, R. Hull, D. C. Jacobson, J. M. Poate, and J. S. Williams, Appl. Phys. Lett.48, 38 (1985).

    Article  Google Scholar 

  19. S. K. Tiku and W. M. Duncan, J. Electrochem. Soc.132, 2237 (1985).

    Article  CAS  Google Scholar 

  20. A. Rose, J. T. A. Pollock, M. D. Scott, G. M. Adams and J. S. Williams, and E. M. Lawson, in Laser-Solid Interactions and Transient Thermal Processing of Materials, Ed. J. Narayan, W. L. Brown and R. A. Lemons North-Holland, New York, 1983, pp. 633–639.

    Google Scholar 

  21. T. E. Haynes, W. K. Chu, T. L. Aselage and S. T. Picraux, Appl. Phys. Lett.49, 666 (1986).

    Article  CAS  Google Scholar 

  22. S. R. Wilson, R. B. Gregory and W. M. Paulson, Materials Research Society Symp. Proceedings52, 181 (1986).

    Google Scholar 

  23. H. Kohzu, M. Kuzuhara and Y. Takayama, J. Appl. Phys.54, 4998 (1985).

    Article  Google Scholar 

  24. S. A. Kitching, M. H. Badawi, S. W. Bland and J. Mun, Materials Research Society Symposia Proceedings,35, 503 (1985).

    CAS  Google Scholar 

  25. M. H. Badawi and J. Mun, Electron. Lett.20, 125 (1984).

    Article  CAS  Google Scholar 

  26. R. I. Blunt, M. S. M. Lamb, and R. Szweda, Appl. Phys. Lett.47, 304 (1985).

    Article  CAS  Google Scholar 

  27. J. F. Gibbons, W. S. Johnson and S. W. Mylroie, Projected Range Statistics, Dowden, Hutchinson and Ross, Inc., Stroudsburg, PA (1975).

    Google Scholar 

  28. C. Licoppe, Y. I. Nissim and C. Merindee, J. Appl. Phys.58, 3094 (1985).

    Article  CAS  Google Scholar 

  29. K. D. Commings, S. J. Pearton and G. P. Vella-Coleiro, J. Appl. Phys.60, 163 (1986).

    Article  Google Scholar 

  30. J. L. Tandon, M. A. Nicolet and F. H. Eisen, Appl. Phys. Lett.34, 15 (1979).

    Google Scholar 

  31. A. Mashyama, M.-A. Nicolet, I. Golecki, J. L. Tandon, D. K. Sadana and J. Washburn, Appl. Phys. Lett.36, 749 (1980).

    Article  Google Scholar 

  32. H. Goronkin and V. Nair, IEEE Electron Device Lett. EDL-6, 47 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulson, W.M., Legge, R.N. & Weitzel, C.E. Rapid thermal annealing of si implanted gaas. J. Electron. Mater. 16, 187–193 (1987). https://doi.org/10.1007/BF02655485

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655485

Key words

Navigation