Skip to main content
Log in

Low temperature epitaxial growth of Si0.5Ge0.5 alloy layer on Si (100) by ion beam assisted deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The first results were reported on low temperature epitaxial growth of Si0.5Ge0.5 alloy layer on Si (100) by ion beam assisted deposition. Nucleation and the growth of Si0.5Ge0.5 alloy layer had been investigated by atomic force microscopy and reflection high energy electron diffraction analysis. The Si0.5Ge0.5 alloy layer nucleated on Si (100) via Stranski-Krastanov (SK) mode. The Ar ion bombard-ment improved crystallinity and prolonged layer-by-layer stage of the SK mode. The epitaxial temperature was 200°C lower than 550-600°C in molecular beam epitaxy. In order to explain the mechanism of low temperature epitaxial growth EAr (energy transferred to growing film by bombarding Ar ion, eV/atom) value was experimentally calculated. In conclusion, the ion bombardment induced dissociation of three-dimensional islands and enhanced the surface diffusion. The variation of tetragonal strain and its effect on electron mobility were taken into consideration. Electron mobility increased with tetragonal strain as a result of band split.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Subramanian S. Iyer and Gary L. Patton,IEEE Trans. Electron Dev. 36, 10, 2043 (1989).

    Article  CAS  Google Scholar 

  2. J.L. Lievin and C.G. Fonstad,Appl. Phys. Lett. 51, 1173 (1987).

    Article  CAS  Google Scholar 

  3. E.A. Fitzgerald,J. Met. 41, 21 (1989).

    Google Scholar 

  4. J.C. Bean and L.C. Fiory,J. Vac. Sci. Technol. A 2, 436 (1984).

    Article  CAS  Google Scholar 

  5. J.C. Bean and T.T. Sheng,Appl. Phys. Lett. 44 (1), 1, 102 (1984).

    Google Scholar 

  6. R.C. Chapman and P.S. Smith,J. Vac. Sci. Technol B 10, 1329 (1992).

    Article  CAS  Google Scholar 

  7. W.A. Brentiely,J. Appl. Phys. 44, 1, 534 (1973).

    Article  Google Scholar 

  8. J.M. Van Hove, P. Pukite and P.I. Cohen,J. Vac. Sci. Technol. A 1, 609 (1983).

    Article  Google Scholar 

  9. J.P. Dismukes, L. Ekstrom and R.J. Paff,J. Phys. Chem. 68, 10, 3021 (1964).

    Article  CAS  Google Scholar 

  10. J.W. Edington,Electron Diffraction in the Electron Microscope, Monograph Two (London: Macmillan, 1975), p. 58.

    Google Scholar 

  11. John E. Mahan, Kent M. Geib and G.Y. Robinson,J. Vac. Sci. Technol. A 8 (5), 3692 (1990).

    Article  CAS  Google Scholar 

  12. G.F.A. Van de Walle,Thin Solid Films 183, 902 (1989).

    Article  Google Scholar 

  13. J.W. Mathewas,J. Vac. Sci. Technol. 12, 126 (1975).

    Article  Google Scholar 

  14. P.Y. Timbrell and D.J. Lockwood,J. Appl. Phys. 67 (10), 15, 6292 (1990).

    Article  CAS  Google Scholar 

  15. Y. Koharna and M. Seki,Appl. Phys. Lett. 25, 5, 380 (1987).

    Google Scholar 

  16. F.M. D’Heurle,Metall. Trans. 1, 725 (1970).

    CAS  Google Scholar 

  17. S.W. Park, Ph.D thesis, Yonsei University, Korea (1994), p. 181.

  18. D.C. Houghton,J. Appl. Phys. 70, 2140 (1991).

    Article  Google Scholar 

  19. R. People,Phys. Rev. B 32, 1405 (1985).

    Article  CAS  Google Scholar 

  20. A. Yamada, M. Tanda and K. Takahashi,J. Appl. Phys. 69, 2, 1008 (1990).

    Article  Google Scholar 

  21. O. Madelung,Data in Science and Technology; Semiconduc- tors (London: Springer-Verlag Publications, 1991), p. 57.

    Google Scholar 

  22. S.W. Park, Ph.D thesis, Yonsei University, Korea (1994), p. 154.

  23. D. Van Vechten, G.K. Hubler and F.D. Correll,J. Vac. Sci. Technol. A 8 (2), 821 (1990).

    Article  Google Scholar 

  24. G. Gautherin and C. Schwebel,Thin Films from Free Atoms and Particles, ed. Kenneth J. Klabunde (New York: Academic Press, 1985), p. 203.

    Google Scholar 

  25. J.E. Greene and S.A. Barnett,J. Vac. Sci. Technol. 21, 285 (1982).

    Article  CAS  Google Scholar 

  26. J.E. Greene and S.A. Barnett,Ion Beam Assisted Film Growth, ed. T. Itoh (New York: Elsevier, 1988).

    Google Scholar 

  27. D.J. Eaglesham, H.J. Gossmann and M. Cerullo,Mat. Res. Soc. Symp. Proc, ed. Don W. Shaw and J.C. Bean, 198 (1990), p. 51.

  28. E.A. Fitzerald,J. Met. 41, 21 (1989).

    Google Scholar 

  29. K.H. Muller,Phys. Rev. B 35, 7906 (1987).

    Article  Google Scholar 

  30. Ludmila Eckertova,Physics of Thin Films, 2nd ed. (New York: Plenum Press, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.W., Shim, J.Y. & Baik, H.K. Low temperature epitaxial growth of Si0.5Ge0.5 alloy layer on Si (100) by ion beam assisted deposition. J. Electron. Mater. 24, 1399–1406 (1995). https://doi.org/10.1007/BF02655455

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655455

Key words

Navigation